渐开线的解释
1个回答
展开全部
将一个圆轴固定在一个平面上,轴上缠线,拉紧一个线头,让该线绕圆轴运动且始终与圆轴相切,那么线上一个定点在该平面上的轨迹就是渐开线。
直线在圆上纯卜肆滚动时,直线上一点K的轨迹称为该圆的渐开线,该圆称为渐开线的基圆,直线称为渐开线的发生线。 渐开线型罩轿的形状仅取决于基圆的大小,基圆越小,渐开线越弯曲;基圆越大,渐开线越平直;基圆为无穷大时,渐开线为斜闷卖直线。渐开线方程为:
x=r×cos(θ+α)+(θ+α)×r×sin(θ+α)
y=r×sin(θ+α)-(θ+α)×r×cos(θ+α)
z=0
式中,r为基圆半径;θ为展角,其单位为弧度
展角θ和压力角α之间的关系称为渐开线函数
θ=inv(α)=tan(α)-α
式中,inv为渐开线involute的缩写
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询