函数连续的充分必要条件 10

 我来答
生活家马先生
2019-05-19 · TA获得超过18.4万个赞
知道小有建树答主
回答量:136
采纳率:100%
帮助的人:3.4万
展开全部

由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。

设函数f(x)在点X0的某个邻域内有定义,如果有

则称函数在点X0处连续,且称X0为函数的的连续点。

设函数在区间

内有定义,如果f(x)在x=b的左极限存在且等于f(b)即

那么就称函数在点b左连续。

设函数在区间

 

内有定义,如果f(x)在x=a处右极限存在且等于f(a)即

 

那么就称函数f(x)在点a右连续。

一个函数在开区间(a,b)内每点连续,则为在(a,b)连续,若又在a点右连续,b点左连续,则在闭区间

连续,如果在整个定义域内连续,则称为连续函数。

扩展资料

连续性与有界性:

闭区间上的连续函数在该区间上一定有界。

所谓有界是指,存在一个正数M,使得对于任意x∈[a,b],都有|f(x)|≤M。

证明:利用致密性定理:有界的数列必有收敛子数列。

反证法,假设f(x)在[a,b]上无上界,则对任意正数M,都存在一个x'∈[a,b],使f(x')>M。

特别地,对于任意正整数n,都存在一个xn∈[a,b],使f(xn)>n。

依次取n=1、2、3、……,得到一个数列{xn}⊂[a,b]。显然,{xn}是有界的,则根据致密性定理,存在一个收敛子列

 由

及数列极限的保不等式性可知,a≤x0≤b(即x0∈[a,b])。

又由归结原则和函数在点x0的连续性可知,

另一方面,由{xn}的选取方法可知,

 于是当k→∞时,

 矛盾!

所以假设不成立,f(x)在[a,b]上必有上界。

同理可证f(x)在[a,b]上必有下界,从而f(x)在[a,b]上有界。

你爱我妈呀
2019-05-17 · TA获得超过8.6万个赞
知道小有建树答主
回答量:686
采纳率:100%
帮助的人:26万
展开全部

判断函数f(x)在x0点处连续,当且仅当f(x)满足以下三个充要条件:

1、f(x)在x0及其左右近旁有定义。

2、f(x)在x0的极限存在。

3、f(x)在x0的极限值与函数值f(x0)相等。

扩展资料:

函数连续的性质

1、有界性。闭区间上的连续函数在该区间上一定有界。所谓有界是指,存在一个正数M,使得对于任意x∈[a,b],都有|f(x)|≤M。

2、最值性。闭区间上的连续函数在该区间上一定能取得最大值和最小值。所谓最大值是指,[a,b]上存在一个点x0,使得对任意x∈[a,b],都有f(x)≤f(x0),则称f(x0)为f(x)在[a,b]上的最大值。最小值可以同样作定义,只需把上面的不等号反向即可。

3、介值性。若f(a)=A,f(b)=B,且A≠B。则对A、B之间的任意实数C,在开区间(a,b)上至少有一点c,使f(c)=C。

4、一致连续性。闭区间上的连续函数在该区间上一致连续。所谓一致连续是指,对任意ε>0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<δ时,有|f(x1)-f(x2)|<ε,就称f(x)在I上是一致连续的。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
玉杵捣药
高粉答主

推荐于2018-03-07 · 醉心答题,欢迎关注
知道顶级答主
回答量:6.4万
采纳率:72%
帮助的人:2.6亿
展开全部
函数f(x)在x0点有定义的必要条件是:
1、函数f(x)在x0点的邻域有定义,
2、函数f(x)在x0点的极限存在;
3、在x0点,函数f(x)的极限值与函数值相等。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lhy741201
情感倾听者

2019-12-23 · 帮你剖析情感问题
知道小有建树答主
回答量:7304
采纳率:41%
帮助的人:676万
展开全部
判断函数f(x)在x0点处连续,当且仅当f(x)满足以下三个充要条件:
1、f(x)在x0及其左右近旁有定义。
2、f(x)在x0的极限存在。
3、f(x)在x0的极限值与函数值f(x0)相等。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
孟子故里人

2019-12-23 · TA获得超过3678个赞
知道答主
回答量:7067
采纳率:23%
帮助的人:211万
展开全部
精选问答函数f(x)在x0点有定义的必要条件是:1、函数f(x)在x0点的邻域有定义,2、函数f(x)在x0点的极限存在。3、在x0点,函数f(x)的极限值与函数值相等。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式