有哪些典型的周期函数
展开全部
sin x,cos x,tan x,cot x 等所有的三角函数都是周期函数。周期函数的定义域一定是无限集合,定义在有限集合上的函数都不是周期函数
任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。
周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期,譬如狄利克雷函数。
扩展资料:
若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。周期函数f(x)的定义域M必定是至少一方无界的集合。
根据定义讨论函数的周期性可知非零实数T在关系式f(x+T)= f(x)中是与x无关的,故讨论时可通过解关于T的方程f(x+T)- f(x)=0,若能解出与x无关的非零常数T便可断定函数f(x)是周期函数,若这样的T不存在则f(x)为非周期函数。
参考资料来源:百度百科--周期函数
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询