函数f(x)=2x-1/x的单调递增区间

 我来答
法英楼虎
2020-05-17 · TA获得超过3705个赞
知道大有可为答主
回答量:3151
采纳率:28%
帮助的人:426万
展开全部
f(x)=2x-(1/x)
1、定义域是(-∞,0)∪(0,+∞);
2、此函数是奇函数,故只要研究x>0时的单调性即可。
取x1>x2>0,则:f(x1)-f(x2)=[x1-(1/x1)]-[x2-(1/x2)]=(x1-x2)+[x1-x2]/(x1x2)=(x1-x2)[1+(1/x1x2)]
因为x1>x2>0,则:x1-x2>0,1+(1/x1x2)>0,即:f(x1)-f(x2)>0,从而有:
f(x1)>f(x2)
所判斗以函数f(x)=x-(1/x)在区间(0,+∞)上递增。考虑到此函数是奇函薯含数,则f(x)在区间(-∞,0)上也递增。
总结:函数f(x)的递增区间是(-∞,0),(0,+∞)
【注】单调区间绝对不可并!!!!掘手磨!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式