如图,双曲线 y=x/2 经过四边形OABC的顶点A,C,∠ABC=90°,OC平分OA与?

 我来答
天罗网17
2022-11-13 · TA获得超过6176个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:72.3万
展开全部
延长BC,交x轴于点D,
设点C(x,y),AB=a,
∵OC平分OA与x轴正半轴的夹角,
∴CD=CB′,△OCD≌△OCB′,
再由翻折的性质得,BC=B′C,
∵双曲线 y=2x (x>0)经过四边形OABC的顶点A、C,
∴S△OCD= 1/2xy=1,
∴S△OCB′= 1/2xy=1,
∵AB∥x轴,
∴点A(x-a,2y),
∴2y(x-a)=2,
∴ay=1,
∴S△ABC= 1/2ay= 1/2,
∴SOABC=S△OCB′+S△ABC+S△ABC=1+ 1/2+ 1/2=2.
故答案为:2.,6,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式