常见的泰勒展开式

 我来答
叼着棒棒糖拽天下lovedwx
2023-01-24 · 超过41用户采纳过TA的回答
知道小有建树答主
回答量:296
采纳率:100%
帮助的人:4.1万
展开全部

常见的泰勒展开式如下:

泰勒公式展开式:一个函数N阶可导,则这个函数就可以用泰勒公式N阶展开,即f(x)=f(x0)+f’(x0)(x-x0)+f’’(x0)(x-x0)/2!+...+f^(n)(x0)(x-x0)^(n)/n!+0X。

f^(n)(x0)表示f(x)在x0处的N阶导数,0X表示比(x-x0)^(n)更高阶的无穷小。用拉格朗日型余项表示则0X=f^(n+1)(ζ)(x-ζ)^(n+1)/n+1!,而麦克劳林公式是泰勒公式在0点展开的特例。

泰勒公式可以很容易的让你得到f(x)展开式中关于x的幂次项的系数,也可由已知的函数的导数值推出原函数多用于求极限问题。比如求lim (e^x-x-1)/x在x趋近于0时的极限,f(x)=e^x在x=0处二次展开=e^(0)+e^(0)*(x-0)+e^(0)(x-0)/2!+0x=1+x+x/2。

那么lim (e^x-x-1)/x=lim (1+x+x/2-x-1)/x=1/2用导数定义去理解,f’(x)=lim [f(x)-f(x0)]/(x-x0)其中x-\u003ex0。那么就有当x-\u003ex0时lim f(x)-f(x0)=f’(x)(x-x0),lim f(x)其于f(x)的误差拉格朗日型余项为f^(2)(ζ)(x-ζ)^(2)/2!是(x-x0)的高阶无穷小。

郦秋奚纶
2023-06-23 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:33%
帮助的人:721万
展开全部
常见的泰勒展开式有:
1. e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……
2. ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)
3. sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+…… (-∞<x<∞)
4. cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (∞<x<∞)
5. arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……) (|x|<1)
6. arctan x = x - x^3/3 + x^5/5 -……(x≤1)
这些泰勒展开式都是常用的数学公式,在数学分析、物理计算等领域都有广泛应用。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式