辅助角公式高中

 我来答
司泽南聿
2023-01-03 · TA获得超过1551个赞
知道大有可为答主
回答量:6342
采纳率:100%
帮助的人:393万
展开全部

高中辅助角公式有:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2);cost=A/(A^2+B^2)^(1/2)。用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。

如何找出辅助角公式的几何意义呢?或者说,这个公式中的各个量之间有着怎样的联系呢?对于这样一个复杂的公式,不确定的量太多了。

我们需要分析公式中每一个量的意义。先看等式左边:两个分别增大(或减小)一定倍数的正弦与余弦函数的和。再看等式右边:一个增大(或减小)一定倍数并且被改变了初相的正弦函数。从代数意义上讲,辅助角公式是为了对几个同频率的正弦型函数求和,转化为一个单独的正弦型函数而诞生的。

频率相同意味着相同,所以对于辅助角公式而言,为了方便起见,我们只讨论时的特殊情况。在这种情况下,对于一个正弦型函数,我们只有(增大的倍数)与(初相) 两个量需要讨论。我们可以看作大小,把看作角度。而角度和大小恰是极坐标系确定位置的两个要素。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式