高数,对坐标的曲面积分
展开全部
∑在xoy面上的投影是圆周x^2+y^2=1,面积是0,所以dxdy=0,∫∫zdxdy=0。
∑在yoz面上的投影是矩形区域:0≤z≤3,0≤y≤1,曲面取前侧,所以∫∫xdydz=∫(0到3)dz∫(0到1) √(1-y^2)dy=3×π/4=3π/4。
∑在zox面上的投影是矩形区域:0≤z≤3,0≤x≤1,曲面取右侧,所以∫∫ydzdx=∫(0到3)dz∫(0到1) √(1-x^2)dx=3×π/4=3π/4。
所以,原积分等于3π/2
∑在yoz面上的投影是矩形区域:0≤z≤3,0≤y≤1,曲面取前侧,所以∫∫xdydz=∫(0到3)dz∫(0到1) √(1-y^2)dy=3×π/4=3π/4。
∑在zox面上的投影是矩形区域:0≤z≤3,0≤x≤1,曲面取右侧,所以∫∫ydzdx=∫(0到3)dz∫(0到1) √(1-x^2)dx=3×π/4=3π/4。
所以,原积分等于3π/2
追问
大赞!
请问在这类题目中关于一个f(x y z)的方程,表达式里如果没有z,则应该怎么代z?
追答
那么曲面f(x,y,z)=0就代表柱面了,在柱面准线所在坐标面上的投影就只是曲线,而不是区域
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询