证明arctanx+arctan1\x=π\2
3个回答
展开全部
证明过程如下:
设f(x)=arctanx+arctan1/x (x>0)
f'(x)=1/(1+x²)+1/[1+(1/x)²]×(1/x)'
=1/(1+x²)+1/[1+(1/x)²]×(-1/x²)
=1/(1+x²)-1/(1+x²)
=0
所以f(x)在x>0上为常数函数
在x>0上任意取一个x,特别地 ,令x=1,f(x)=π/2
所以f(x)=π/2
扩展资料:
函数y=f(x)在x0点的导数f'(x0)的几何意义表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数。
展开全部
这个........
令A=arctanx,B=arctan1\x
即为,tanA=x,tanB=1/x求证A+B=π\2
tanB=1/x,则,cot B=x
至此已得到tanA=x,cotB=x。即tanA=cotB 在考虑到反三角函数的定义域, 所以 A+B=π\2。
(这个式子是明显成立的,就是不太容易表达出来,每个人都有一套理解的,反正我是这样理解的。)
令A=arctanx,B=arctan1\x
即为,tanA=x,tanB=1/x求证A+B=π\2
tanB=1/x,则,cot B=x
至此已得到tanA=x,cotB=x。即tanA=cotB 在考虑到反三角函数的定义域, 所以 A+B=π\2。
(这个式子是明显成立的,就是不太容易表达出来,每个人都有一套理解的,反正我是这样理解的。)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
tan(arctanx+arctan1/x)
=(tanarctanx+tanarctan1/x)/(1-tanarctanxtanarctan1/x)
=(x+1/x)/(1-1)
正切不存在,因此arctanx+arctan1/x=π/2
=(tanarctanx+tanarctan1/x)/(1-tanarctanxtanarctan1/x)
=(x+1/x)/(1-1)
正切不存在,因此arctanx+arctan1/x=π/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询