求解答,考试中很急。求了

 我来答
刘戈巴
2015-01-06 · TA获得超过4454个赞
知道小有建树答主
回答量:2936
采纳率:0%
帮助的人:863万
展开全部
解答:(1)证明:
连接OA、OD,
∵D为弧BE的中点,
∴OD⊥BC,
∠DOF=90°,
∴∠D+∠OFD=90°,
∵AC=FC,OA=OD,
∴∠CAF=∠CFA,∠OAD=∠D,
∵∠CFA=∠OFD,
∴∠OAD+∠CAF=90°,
∴OA⊥AC,
∵OA为半径,
∴AC是⊙O切线;

(2)解:∵⊙O半径是r,
∴OD=r,OF=8-r,
在Rt△DOF中,r2+(8-r)2=(
40
)2,
r=6,r=2(舍);
即⊙O的半径r为6.
追问
谢谢
追答
不谢
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式