求解答,考试中很急。求了
1个回答
展开全部
解答:(1)证明:
连接OA、OD,
∵D为弧BE的中点,
∴OD⊥BC,
∠DOF=90°,
∴∠D+∠OFD=90°,
∵AC=FC,OA=OD,
∴∠CAF=∠CFA,∠OAD=∠D,
∵∠CFA=∠OFD,
∴∠OAD+∠CAF=90°,
∴OA⊥AC,
∵OA为半径,
∴AC是⊙O切线;
(2)解:∵⊙O半径是r,
∴OD=r,OF=8-r,
在Rt△DOF中,r2+(8-r)2=(
40
)2,
r=6,r=2(舍);
即⊙O的半径r为6.
连接OA、OD,
∵D为弧BE的中点,
∴OD⊥BC,
∠DOF=90°,
∴∠D+∠OFD=90°,
∵AC=FC,OA=OD,
∴∠CAF=∠CFA,∠OAD=∠D,
∵∠CFA=∠OFD,
∴∠OAD+∠CAF=90°,
∴OA⊥AC,
∵OA为半径,
∴AC是⊙O切线;
(2)解:∵⊙O半径是r,
∴OD=r,OF=8-r,
在Rt△DOF中,r2+(8-r)2=(
40
)2,
r=6,r=2(舍);
即⊙O的半径r为6.
追问
谢谢
追答
不谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询