(本小题满分11分)如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点

(本小题满分11分)如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之... (本小题满分11分)如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F与直线EN有怎样的位置关系?都请直接写出结论,不必证明或说明理由;(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系及点F与直线EN的位置关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由. 展开
 我来答
股股天乐759
2015-01-09 · TA获得超过392个赞
知道答主
回答量:104
采纳率:0%
帮助的人:140万
展开全部
(1)判断:EN与MF相等(或EN=MF),点F在直线NE上   ······ 3分
(说明:答对一个给2分)
(2)成立.································ 4分
证明:
法一:连结DE,DF.   ··········································································· 5分
∵△ABC是等边三角形,∴AB=AC=BC.
又∵D,E,F是三边的中点,
∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.
又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,
∴∠MDF=∠NDE. ················································································ 7分
在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,
∴△DMF≌△DNE. ··············································································· 8分
∴MF=NE.       ··············································································· 9分

法二:
延长EN,则EN过点F.    ······································································ 5分
∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴EF=DF=BF.  
∵∠BDM+∠MDF=60°,∠FDN+∠MDF=60°,∴∠BDM=∠FDN.······················· 7分
又∵DM=DN,∠ABM=∠DFN=60°,∴△DBM≌△DFN.································· 8分
∴BM=FN.∵BF=EF, ∴MF=EN.···························································· 9分
法三:
连结DF,NF. ······················································································ 5分

∵△ABC是等边三角形,∴AC=BC=AC.
又∵D,E,F是三边的中点,∴DF为三角形的中位线,∴DF= AC= AB=DB.
又∠BDM+∠MDF=60°,∠NDF+∠MDF=60°,∴∠BDM=∠FDN. ………………7分
在△DBM和△DFN中,DF=DB,
DM=DN,∠BDM=∠NDF,∴△DBM≌△DFN.
∴∠B=∠DFN=60°.…………………………………………………………………8分
又∵△DEF是△ABC各边中点所构成的三角形,
∴∠DFE=60°.∴可得点N在EF上,∴MF=EN.………………………………9分
(3)画出图形(连出线段NE), ······························································· 10分
MF与EN相等及点F在直线NE上的结论仍然成立(或MF=NE成立). ················ 11分

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式