(2011?裕华区一模)如图,已知□ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H,请观察下列
(2011?裕华区一模)如图,已知□ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H,请观察下列结论:①BE=DF;②AG=GH=HC;③EG:B...
(2011?裕华区一模)如图,已知□ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H,请观察下列结论:①BE=DF;②AG=GH=HC;③EG:BG=1:2;④S△AHD=2S△AGE;⑤AG;AC=1:3.其中结论正确的有(填序号)______.
展开
1个回答
展开全部
∵平行四边形ABCD,
∴AD∥BC,AD=BC,
∵E、F分别是边AD、BC的中点,
∴DE=
AD,BF=
BC,
∴DE=CF,DE∥BF,
∴四边形DEBF是平行四边形,
∴BE=DF,∴①正确;
∴BE∥DF,
∵E、F分别是边AD、BC的中点,
∴AG=GH=CH,∴②正确;⑤正确;
∴EG=
DH,
∵平行四边形ABCD,
∴AB∥CD,AB=CD,
∴∠BAC=∠DCA,
∵BE∥DF,
∴∠DHC=∠EGH,
∵∠EGH=∠AGB,
∴∠AGB=∠DHC,
∴△AGB≌△CHD(AAS),
∴DH=BG,
∴EG=
BG,∴③正确;
∵BE∥DF,
∴△AEG∽△ADH,
∴S△ADH=4S△ADH,∴④错误;
正确的有①②③⑤.
故答案为:①②③⑤.
∴AD∥BC,AD=BC,
∵E、F分别是边AD、BC的中点,
∴DE=
1 |
2 |
1 |
2 |
∴DE=CF,DE∥BF,
∴四边形DEBF是平行四边形,
∴BE=DF,∴①正确;
∴BE∥DF,
∵E、F分别是边AD、BC的中点,
∴AG=GH=CH,∴②正确;⑤正确;
∴EG=
1 |
2 |
∵平行四边形ABCD,
∴AB∥CD,AB=CD,
∴∠BAC=∠DCA,
∵BE∥DF,
∴∠DHC=∠EGH,
∵∠EGH=∠AGB,
∴∠AGB=∠DHC,
∴△AGB≌△CHD(AAS),
∴DH=BG,
∴EG=
1 |
2 |
∵BE∥DF,
∴△AEG∽△ADH,
∴S△ADH=4S△ADH,∴④错误;
正确的有①②③⑤.
故答案为:①②③⑤.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询