cosA+cosB+cosC=1+4sinA/2 * sinB/2 * sinC/2求证A+B+C=180
cosA+cosB+cosC=1+4sinA/2*sinB/2*sinC/2求证A+B+C=180...
cosA+cosB+cosC=1+4sinA/2 * sinB/2 * sinC/2求证A+B+C=180
展开
展开全部
题目应该要求了ABC为锐角的吧?
否则ABC同时加上720°依然满足等式但A+B+C就变了。
对所给等式进行恒等变形:
cosA+cosB+cosC=1+4sinA/2 * sinB/2 * sinC/2
2cos(A/2+B/2)cos(A/2-B/2)+1-2(sinC/2)^2=1+4sinA/2*sinB/2*sinC/2
cos(A/2+B/2)cos(A/2-B/2)-(sinC/2)^2=2sinA/2*sinB/2*sinC/2
cos(A/2+B/2)cos(A/2-B/2)-(sinC/2)^2=sinC/2*[cos(B/2-A/2)-cos(B/2+A/2)]
(sinC/2)^2+sinC/2*cos(B/2-A/2)-sinC/2*cos(B/2+A/2)-cos(A/2+B/2)cos(A/2-B/2)=0
[sinC/2+cos(B/2-A/2)][sinC/2-cos(B/2+A/2)]=0
前式在我附加的ABC为锐角的情况下显然是不能为0的。
(当然可能是别的条件,总之应该可以说明前面这个不为0)
故只能后式为0
sinC/2=cos(B/2+A/2)
C/2+B/2+A/2=90°
A+B+C=180 °
证毕。
否则ABC同时加上720°依然满足等式但A+B+C就变了。
对所给等式进行恒等变形:
cosA+cosB+cosC=1+4sinA/2 * sinB/2 * sinC/2
2cos(A/2+B/2)cos(A/2-B/2)+1-2(sinC/2)^2=1+4sinA/2*sinB/2*sinC/2
cos(A/2+B/2)cos(A/2-B/2)-(sinC/2)^2=2sinA/2*sinB/2*sinC/2
cos(A/2+B/2)cos(A/2-B/2)-(sinC/2)^2=sinC/2*[cos(B/2-A/2)-cos(B/2+A/2)]
(sinC/2)^2+sinC/2*cos(B/2-A/2)-sinC/2*cos(B/2+A/2)-cos(A/2+B/2)cos(A/2-B/2)=0
[sinC/2+cos(B/2-A/2)][sinC/2-cos(B/2+A/2)]=0
前式在我附加的ABC为锐角的情况下显然是不能为0的。
(当然可能是别的条件,总之应该可以说明前面这个不为0)
故只能后式为0
sinC/2=cos(B/2+A/2)
C/2+B/2+A/2=90°
A+B+C=180 °
证毕。
展开全部
cosA+cosB=1-cosC+4sinA/2sinB/2sinC/2
2cos(A+B/2)cos(A-B/2)=2(sinC/2)^2+4sinA/2sinB/2sinC/2
cos(A+B/2)cos(A-B/2)=(sinC/2)^2+sinC/2*(cos(A-B/2)-cos(A+B/2))=(sinC/2)^2+sinC/2*cos(A-B/2)-sinC/2cos(A+B/2)
∴cos(A+B/2)(cos(A-B/2)+sinC/2)=sinC/2*(sinC/2+cos(A-B/2))
即 cos(A+B/2)=sinC/2或者 cos(A-B/2)+sinC/2=0
这里需要有一些条件才能说明A+B+C=180°,比如0 °<A,B,C<=180°
如果有上述条件,那么 cos(A-B/2)+sinC/2>0
那么有cos(A+B/2)=cos(90°-C/2)
(A+B)/2=90°-C/2
A+B+C=180°
2cos(A+B/2)cos(A-B/2)=2(sinC/2)^2+4sinA/2sinB/2sinC/2
cos(A+B/2)cos(A-B/2)=(sinC/2)^2+sinC/2*(cos(A-B/2)-cos(A+B/2))=(sinC/2)^2+sinC/2*cos(A-B/2)-sinC/2cos(A+B/2)
∴cos(A+B/2)(cos(A-B/2)+sinC/2)=sinC/2*(sinC/2+cos(A-B/2))
即 cos(A+B/2)=sinC/2或者 cos(A-B/2)+sinC/2=0
这里需要有一些条件才能说明A+B+C=180°,比如0 °<A,B,C<=180°
如果有上述条件,那么 cos(A-B/2)+sinC/2>0
那么有cos(A+B/2)=cos(90°-C/2)
(A+B)/2=90°-C/2
A+B+C=180°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询