不定积分问题,请老师解答
2个回答
展开全部
let
x=tanu
dx=(secu)^2 du
x=1, u=π/4
x=√3, u=π/3
∫(1->√3) dx/[x^2.√(1+x^2) ]
=∫(π/4->π/3) (cotu)^2 du
=∫(π/4->π/3) [(cscu)^2 -1] du
= [-cotu -u ]|(π/4->π/3)
= (-√3/3 - π/3) - ( -1 - π/4)
=1 - (1/3)√3 - (1/12)π
x=tanu
dx=(secu)^2 du
x=1, u=π/4
x=√3, u=π/3
∫(1->√3) dx/[x^2.√(1+x^2) ]
=∫(π/4->π/3) (cotu)^2 du
=∫(π/4->π/3) [(cscu)^2 -1] du
= [-cotu -u ]|(π/4->π/3)
= (-√3/3 - π/3) - ( -1 - π/4)
=1 - (1/3)√3 - (1/12)π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询