(2COS20-SIN10)/SIN80等于多少
1个回答
展开全部
(2cos20-sin80)/sin80
=[2cos20-sin(90-10)]/sin(90-10)
=(cos20+cos20-cos80)/cos10
=[cos20-(cos80-cos20)]/cos10
={cos20-[-2sin (80+20)/2 sin (80-20)/2]}/cos10
=(cos20+2sin50sin30)/cos10
=(cos20+sin50)/cos10
=[cos20+sin(90-40)]/cos10
=(cos20+cos40)/cos10
=[2cos (40+20)/2 cos (40-20)/2]/cos10
=(2cos30cos10)/cos10
=√3
=[2cos20-sin(90-10)]/sin(90-10)
=(cos20+cos20-cos80)/cos10
=[cos20-(cos80-cos20)]/cos10
={cos20-[-2sin (80+20)/2 sin (80-20)/2]}/cos10
=(cos20+2sin50sin30)/cos10
=(cos20+sin50)/cos10
=[cos20+sin(90-40)]/cos10
=(cos20+cos40)/cos10
=[2cos (40+20)/2 cos (40-20)/2]/cos10
=(2cos30cos10)/cos10
=√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询