用数学归纳法证明(1-1/4)(1-1/9)(1-1/16).(1-1/n^2)=(n+1/)2n(n≥2,n∈N*)?
1个回答
展开全部
(1-1/4)(1-1/9)(1-1/16).(1-1/n^2)=(n+1)/(2n)
证明:
记上式为S(n)=(1-1/4)(1-1/9)(1-1/16).(1-1/n^2)
1° 当n=2时,S(2)=3/4=(2+1)/(2*2),成立
2° 若n=k时,推测成立
即S(k)=(k+1)/(2k)
S(k+1)=S(k)*[1-1/(k+1)^2]
=[(k+1)/(2k)]* [k*(k+2)/(k+1)^2]
=[(k+1)+1]/(2k+1)
所以对n=k+1的情况也成立
综合1°,2°,知猜想成立~,3,
证明:
记上式为S(n)=(1-1/4)(1-1/9)(1-1/16).(1-1/n^2)
1° 当n=2时,S(2)=3/4=(2+1)/(2*2),成立
2° 若n=k时,推测成立
即S(k)=(k+1)/(2k)
S(k+1)=S(k)*[1-1/(k+1)^2]
=[(k+1)/(2k)]* [k*(k+2)/(k+1)^2]
=[(k+1)+1]/(2k+1)
所以对n=k+1的情况也成立
综合1°,2°,知猜想成立~,3,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询