线性代数中,怎么判断两个矩阵是否合同?
1个回答
展开全部
矩阵合同的判别法:
设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同。
设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负特征值的个数相等)。
扩展资料:
合同矩阵发展史
1、1855 年,埃米特证明了其他数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来 ,克莱伯施、布克海姆等证明了对称矩阵的特征根性质。泰伯引入矩阵的迹的概念并得出了一些有关的结论。
2、在矩阵论的发展史上,弗罗伯纽斯的贡献是不可磨灭的。他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻睁晌源辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。
3、1854年,约当研究了矩阵化为标悉态准型的问题。 1892 年,梅茨勒引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形谨者式。
参考资料来源:百度百科-合同矩阵
大雅新科技有限公司
2024-11-19 广告
2024-11-19 广告
1. A,B相似,则特征值相同 -这是定理,相似矩阵的特征多项式相同 A,B合同: 概念来源自二次型, 一般是实对称矩阵 2. A,B合同, 则正负惯性指数相同,秩相同 -定理 A,B不相似,由于A,B为实对称矩阵, 都可对角化, 所以特征...
点击进入详情页
本回答由大雅新科技有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询