有向图和无向图的邻接矩阵有什么区别
我看见有的题目的答案中的矩阵有0和1,但有的又有0、1和∞。。。请问什么时候是前者,什么时候是后者呢??...
我看见有的题目的答案中的矩阵有0和1,但有的又有0、1和∞。。。请问什么时候是前者,什么时候是后者呢??
展开
展开全部
一、对称区别:
1、无向图的邻接矩阵是对称的。
2、有向图的邻接矩阵不一定对称。
二、元素区别:
1、对于无向图,顶点V1的度是邻接矩阵中第i行(或第i列)的非零元素的个数。
2、对于有向图,顶点V1的度是邻接矩阵中第i行和第i列的非零元素的个数之和。
扩展资料:
邻接矩阵特点
无向图的邻接矩阵一定是对称的,而有向图的邻接矩阵不一定对称。因此,用邻接矩阵来表示一个具有n个顶点的有向图时需要n^2个单元来存储邻接矩阵;对有n个顶点的无向图则只存入上(下)三角阵中剔除了左上右下对角线上的0元素后剩余的元素,故只需1+2+...+(n-1)=n(n-1)/2个单元。
无向图邻接矩阵的第i行(或第i列)非零元素的个数正好是第i个顶点的度。
有向图邻接矩阵中第i行非零元素的个数为第i个顶点的出度,第i列非零元素的个数为第i个顶点的入度,第i个顶点的度为第i行与第i列非零元素个数之和。
用邻接矩阵表示图,很容易确定图中任意两个顶点是否有边相连。
参考资料来源:百度百科-邻接矩阵
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
二者的区别:
邻接矩阵(Adjacency Matrix):是表示顶点之间相邻关系的矩阵。设G=(V,E)是一个图,其中V={v1,v2,…,vn}。G的邻接矩阵是一个具有下列性质的n阶方阵:
①对无向图而言,邻接矩阵一定是对称的,而且主对角线一定为零(在此仅讨论无向简单图),副对角线不一定为0,有向图则不一定如此。
②在无向图中,任一顶点i的度为第i列所有元素的和,在有向图中顶点i的出度为第i行所有元素的和,而入度为第i列所有元素的和。
③用邻接矩阵法表示图共需要n^2个空间,由于无向图的邻接矩阵一定具有对称关系,所以扣除对角线为零外,仅需要存储上三角形或下三角形的数据即可,因此仅需要n(n-1)/2个空间。
邻接矩阵(Adjacency Matrix):是表示顶点之间相邻关系的矩阵。设G=(V,E)是一个图,其中V={v1,v2,…,vn}。G的邻接矩阵是一个具有下列性质的n阶方阵:
①对无向图而言,邻接矩阵一定是对称的,而且主对角线一定为零(在此仅讨论无向简单图),副对角线不一定为0,有向图则不一定如此。
②在无向图中,任一顶点i的度为第i列所有元素的和,在有向图中顶点i的出度为第i行所有元素的和,而入度为第i列所有元素的和。
③用邻接矩阵法表示图共需要n^2个空间,由于无向图的邻接矩阵一定具有对称关系,所以扣除对角线为零外,仅需要存储上三角形或下三角形的数据即可,因此仅需要n(n-1)/2个空间。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询