集合M={a,b,c},N={-1,0,1},映射f:M→N满足f(a)+f(b)+f(c)=0,那么映射f:M→N的个数是多少

集合M={a,b,c},N={-1,0,1},映射f:M→N满足f(a)+f(b)+f(c)=0,那么映射f:M→N的个数是多少?... 集合M={a,b,c},N={-1,0,1},映射f:M→N满足f(a)+f(b)+f(c)=0,那么映射f:M→N的个数是多少? 展开
 我来答
百度网友cfc7126
2014-11-12 · 超过67用户采纳过TA的回答
知道答主
回答量:123
采纳率:75%
帮助的人:57.7万
展开全部
因为:f(a)∈N,f(b)∈N,f(c)∈N,且f(a)+f(b)+f(c)=0,
所以分为2种情况:0+0+0=0 或者 0+1+(-1)=0.
当f(a)=f(b)=f(c)=0时,只有一个映射;
当f(a)、f(b)、f(c)中恰有一个为0,而另两个分别为1,-1时,有C 3 1 ?A 2 2 =6个映射.因此所求的映射的个数为1+6=7.
故答案为7.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式