若函数f(x)ax三次方-bx+4,当x=2时,函数f(x)有极值-4/3

求函数的解析式若关于x的方程f(x)=k有三个零点,求实数K的取值范围... 求函数的解析式
若关于x的方程f(x)=k有三个零点,求实数K的取值范围
展开
sxhyz0828
2010-07-29 · TA获得超过9880个赞
知道大有可为答主
回答量:1911
采纳率:0%
帮助的人:1094万
展开全部
f(x)=ax^3-bx+4
f'(x)=3ax^2-b
当x=2时有极值,则f'(2)=12a-b=0有解,得b=12a
所以
f(x)=ax^3-12ax+4
f(2)=a*8-12a*2+4=-4/3,得a=1/3
则b=4
所以函数解析式为f(x)=1/3 x^3-4x+4

2)\若关于x的方程f(x)=k有三个零点
g(x)=f(x)-k=1/3 x^3-4x+4-k
因为g'(x)=x^2-4
令g'(x)=0时得x=2或x=-2,有两个驻点
可x=2时极小值点,x=-2是极大值点
要满足有三个零点,则在两个驻点处的纵坐标一正一负即可
所以g(2)=-4/3-k<0,即k>-4/3
且g(-2)=1/3*(-8)-4*(-2)+4-k=28/3-k>0,即k<28/3
综合得实数K的取值范围是(-4/3,28/3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式