什么是大数据 大数据有什么意义

 我来答
十方融海 2022-03-14
展开全部
大数据分析的具体内容可以分为四步:1、数据获取:需要把握对问题的商业理解,转化成数据问题来解决,直白点讲就是需要哪些数据,从哪些角度来分析,界定问题后,再进行数据采集。这样,就需要数据分析师具备结构化的逻辑思维。2、数据处理:数据的处理需要掌握有效率的工具,例如:Excel基础、常用函数和公式、数据透视表、VBA程序开发等式必备的;其次是Oracle和SQLsever。这是企业大数据分析不可缺少的技能。还有Hadoop之类的分布式数据库,也应该掌握。3、分析数据:分析数据需要各类统计分析模型,如关联规则、聚类、分类、预测模型等等。SPSS…
鲸娱文化
2019-04-15 · TA获得超过261万个赞
知道大有可为答主
回答量:13.3万
采纳率:92%
帮助的人:8899万
展开全部

大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。通过大量的统计了解大家的喜好,想要的东西,从而得到他们想要的,比如精准营销,征信分析,消费分析等等

十方融海
2022-03-14 广告
大数据分析的具体内容可以分为四步:1、数据获取:需要把握对问题的商业理解,转化成数据问题来解决,直白点讲就是需要哪些数据,从哪些角度来分析,界定问题后,再进行数据采集。这样,就需要数据分析师具备结构化的逻辑思维。2、数据处理:数据的处理需要... 点击进入详情页
本回答由十方融海提供
尚学堂java学院
2020-12-28 · 百度认证:北京尚学堂科技有限公司官方账号
尚学堂java学院
向TA提问
展开全部

我们正处在科技高速发展的时代,如今互联网已经与我们的生活息息相关,我们每天在互联网产生大量的数据,这些数据散落在网络中看似没有怎么作用,但是这些数据经过系统的处理整合起来确实非常有价值的。

一、 发展大数据技术可以提高生产力

大数据技术在企业已经成为投入使用很成功的案例,很多应用程序开发商和大型公司都运用大数据技术扩展大数据项目。大数据技术在运用时可以通过数据挖掘知道最需要的数据是哪些,通过这些数据获取更多的生产力,提高生产能力,为企业带来更多的商业价值。目前有很多企业通过数据挖掘分析解决问题,相对来说大数据分析比着传统的数据分析速度更快,更能获取可“回收利用”的信息流量,提高行业内的生产力。

二、 发展大数据技术可以改善营销决策

近几年的数据量暴增,数据盈利也很可能成为未来收入的主要来源,大数据技术在海量数据的分析中,寻求到最合适的企业营销策略,通过数据分析给企业带来更明智的策略。

大数据工程师通过对客户的数据精湛分析,分析行业内的流行趋势并且定制出更适合的产品或者服务,通过对定价的检测和分析对客户忠诚度有效评估,一系列的运用大数据及时改善营销决策,给企业带来有价值的数据决策。

三、 发展大数据技术的未来优势

大数据行业的兴起,许多开发企业都意识到,想要在行业内不断的发展就要运用大数据技术,提升自身企业的品牌价值,在行业比拼中寻求更多的竞争优势,微软亚马逊等大型跨国公司目前都在采用大数据解决问题,为消费者提供更好的服务。

目前有很多行业和企业都尝到大数据技术的甜头了,未来会有越来越多运用大数据技术的产业,以现在大数据发展的速度来看,2020年大数据的市场规模将达到2030亿美元,很多企业都在期盼大数据项目可以运用的范围更广阔,然后通过运用产生更大的利益空间。

大数据技术能为行业提高生产力、改善营销决策,给企业带来更好的发展前景,目前大数据技术发展虽然在初级阶段,但是发展势头很猛,未来也会有更多的行业领域涉足大数据技术运用,大数据技术未来发展形式一片大好!

当下,大数据方面的就业主要有三大方向:一是数据分析类大数据人才,二是系统研发类大数据人才,三是应用开发类大数据人才。他们的基础岗位分别是大数据系统研发工程师、大数据应用开发工程师、大数据分析师,如果想系统的学习编程的可以来我这看看。

对于求职者来说,大数据只是所从事事业的一个方向,而职业岗位则是决定做什么事?大数据从业者/求职者可以根据自身所学技术及兴趣特征,选择一个适合自己的大数据相关岗位。下面为大家介绍十种与大数据相关的热门岗位。

一、ETL研发

企业数据种类与来源的不断增加,对数据进行整合与处理变得越来越困难,企业迫切需要一种有数据整合能力的人才。ETL开发者这是在此需求基础下而诞生的一个职业岗位。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。

二、Hadoop开发

随着数据规模不断增大,传统BI的数据处理成本过高企业负担加重。而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。并成为大数据人才必须掌握的一种技术。

三、可视化工具开发

可视化开发就是在可视化工具提供的图形用户界面上,通过操作界面元素,有可视化开发工具自动生成相关应用软件,轻松跨越多个资源和层次连接所有数据。过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。

四、信息架构开发

大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。


五、数据仓库研究

为方便企业决策,出于分析性报告和决策支持的目的而创建的数据仓库研究岗位是一种所有类型数据的战略集合。为企业提供业务智能服务,指导业务流程改进和监视时间、成本、质量和控制。

六、OLAP开发

OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。

七、数据科学研究

数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。

八、数据预测分析

营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。

九、企业数据管理

企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。

十、数据安全研究

数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。成都加米谷大数据培训机构,专注于大数据人才培养。

希望对您有所帮助!~

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
冥血薇双子
2018-04-16 · TA获得超过3335个赞
知道大有可为答主
回答量:3462
采纳率:0%
帮助的人:355万
展开全部
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取:关系数据库、NOSQL、SQL等。
基础架构:云存储、分布式文件存储等。
数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测:预测模型、机器学习、建模仿真。
结果呈现:云计算、标签云、关系图等。
要理解大数据这一概念,首先要从"大"入手,"大"是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。

第一,数据体量巨大。从TB级别,跃升到PB级别。
第二,数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。

大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。解决大数据问题的核心是大数据技术。目前所说的"大数据"不仅指数据本身的规模,也包括采集数据的工具、平台和数据分析系统。大数据研发目的是发展大数据技术并将其应用到相关领域,通过解决巨量数据处理问题促进其突破性发展。因此,大数据时代带来的挑战不仅体现在如何处理巨量 收起
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
尚学堂大数据学院
2020-10-22 · 让人人享有高品质教育
尚学堂大数据学院
向TA提问
展开全部
大数据是什么?在很多人的眼里大数据可能是一个很模糊的概念,
但是,在日常生活中大数据有离我们很近,我们无时无刻不再享受着大数据所给我们带来的便利,个性化,人性化。
全面的了解大数据我们应该从四个方面简单了解。
定义,结构特点,
我们身边有哪些大数据,大数据带来了什么,
这四个方面了解。

那么“大数据”到底是什么呢?

在麦肯锡全球研究所给出的定义中指出:大数据即是一种规模大到在获取,存储,管理,分析方面大大超出了传统数据库软件工具能力范围的数据集合。简单而言大数据是数据多到爆表。大数据的单位一般以PB衡量。那么PB是多大呢?1GB=1024MB,1PB=1024GB才足以称为大数据。
其次,大数据具有什么样的特点和结构呢?

大数据从整体上看分为四个特点,第一,大量。

衡量单位PB级别,存储内容多。

第二,高速。
大数据需要在获取速度和分析速度上要及时迅速。保证在短时间内更多的人接收到信息。

第二,多样。

数据的来源是各种渠道上获取的,有文本数据,图片数据,视频数据等。因此数据是多种多样的。

第三,价值。

大数据不仅仅拥有本身的信息价值,还拥有商业价值。
大数据在结构上还分为:结构化,半结构化,非结构化。结构化简单来讲是数据库,是由二维表来逻辑表达和实现的数据。非结构化即数据结构不规则或不完整,没有预定义的数据模型。由人类产生的数据大部分是非结构化数据。

那我们身边有哪些东西是大数据呢?

在生产生活中常见的有电信数据:通话数据、短信数据、手机浏览数据。银行数据,微信聊天数据等。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
二十伊8794
2020-12-01 · 超过44用户采纳过TA的回答
知道小有建树答主
回答量:186
采纳率:16%
帮助的人:7.1万
展开全部
别再忽视大数据了,努力固然重要,但是把握住时代发展潮流,选择好方向也必不可少,甚至更重要。

目前企业提供的大数据岗位按照工作内容要求,可以分为以下几类:

①初级分析类,包括业务数据分析师、商务数据分析师等。②挖掘算法类,包括数据挖掘工程师、机器学习工程师、深度学习工程师、算法工程师、AI工程师、数据科学家等。③开发运维类,包括大数据开发工程师、大数据架构工程师、大数据运维工程师、数据可视化工程师、数据采集工程师、数据库管理员等。④产品运营类,包括数据运营经理、数据产品经理、数据项目经理、大数据销售等。

大数据本身是一个抽象的概念。从一般意义上讲,大数据是指无法在有限时间内用常规软件工具对其进行获取、存储、管理和处理的数据集合。
目前,业界对大数据还没有一个统一的定义,但是大家普遍认为,大数据具备 Volume、Velocity、Variety 和 Value 四个特征,简称“4V”,即数据体量巨大、数据速度快、数据类型繁多和数据价值密度低,如图 1 所示。下面分别对每个特征作简要描述。

1)Volume:表示大数据的数据体量巨大。
数据集合的规模不断扩大,已经从 GB 级增加到 TB 级再增加到 PB 级,近年来,数据量甚至开始以 EB 和 ZB 来计数。

例如,一个中型城市的视频监控信息一天就能达到几十 TB 的数据量。百度首页导航每天需要提供的数据超过 1-5PB,如果将这些数据打印出来,会超过 5000 亿张 A4 纸。图 2 展示了每分钟互联网产生的各类数据的量。

2)Velocity:表示大数据的数据产生、处理和分析的速度在持续加快。

加速的原因是数据创建的实时性特点,以及将流数据结合到业务流程和决策过程中的需求。数据处理速度快,处理模式已经开始从批处理转向流处理。

业界对大数据的处理能力有一个称谓——“ 1 秒定律”,也就是说,可以从各种类型的数据中快速获得高价值的信息。大数据的快速处理能力充分体现出它与传统的数据处理技术的本质区别。

3)Variety:表示大数据的数据类型繁多。

传统 IT 产业产生和处理的数据类型较为单一,大部分是结构化数据。随着传感器、智能设备、社交网络、物联网、移动计算、在线广告等新的渠道和技术不断涌现,产生的数据类型无以计数。

现在的数据类型不再只是格式化数据,更多的是半结构化或者非结构化数据,如 XML、邮件、博客、即时消息、视频、照片、点击流、 日志文件等。企业需要整合、存储和分析来自复杂的传统和非传统信息源的数据,包括企业内部和外部的数据。

4)Value:表示大数据的数据价值密度低。

大数据由于体量不断加大,单位数据的价值密 度在不断降低,然而数据的整体价值在提高。以监控视频为例,在一小时的视频中,有用的数据可能仅仅只有一两秒,但是却会非常重要。现在许多专家已经将大数据等同于黄金和石油,这表示大数据当中蕴含了无限的商业价值。

通过对大数据进行处理,找出其中潜在的商业价值,将会产生巨大的商业利润。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(17)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式