x/(1+sinx)的不定积分
原式
=∫(1+sinx-1)/(1+sinx)dx
=∫1-1/(1+sinx)dx
=∫1-1/(1+cos(x-π/2))dx
由cos2t=2(cost)^2-1可得:
=∫1-1/(1+2[cos(x/2-π/4)]^2-1)dx
=∫1-1/2cos(x/2-π/4)^2 dx
=x-tan(x/2-π/4)+C
化简得:
=x+cosx/(1+sinx)+C
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
结果:=x+cosx/(1+sinx)+C
原式
=∫(1+sinx-1)/(1+sinx)dx
=∫1-1/(1+sinx)dx
=∫1-1/(1+cos(x-π/2))dx
由cos2t=2(cost)^2-1可得:
=∫1-1/(1+2[cos(x/2-π/4)]^2-1)dx
=∫1-1/2cos(x/2-π/4)^2 dx
=x-tan(x/2-π/4)+C
化简得:=x+cosx/(1+sinx)+C
由定义可知:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。
广告 您可能关注的内容 |