已知直角三角形ABC中,角ACB=90度,CA=CB,

 我来答
余颖卿封诗
2019-12-06 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:34%
帮助的人:868万
展开全部
解:∵△ABC是等腰直角三角形,∠ACB=90°
∴AC=BC,∠A=∠ABC=45°
将△ACM绕C旋转90度到△CBD的位置,连接ND
∵△ACM≌△BCD
∴CM=CD,∠ACM=∠BCD,∠A=∠CBD=45°,AM=BD
∵∠ACB=90°,∠MCN=45°
∴∠ACM+∠BCN=45°
∴∠BCD+∠BCN=45°,即∠DCN=45°
∴∠MCN=∠DCN
又∵CN=CN
∴△MCN≌△DCN(SAS)
∴MN=ND
∵∠DBN=∠ABC+∠CBD=45°+45°=90°
∴△BDN是直角三角形
∴BD^2+BN^2=DN^2
由于AM=BD,MN=ND
∴MN^2=AM^2+BN^2
注:参考于网上,步骤有点不规范,请谅解
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式