初中二次函数知识点
二次函数是初中数学比较重点的一部分,下面为大家总结了初中二次函数知识点,仅供大家参考。
二次函数的定义
一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函销芦数.
注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;
(2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;
(3)当b=c=0时,二次函数y=ax2是最简单的二次函数;
(4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论枣仿,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数。
二次函数的三种表达式
一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a
二次函数的顶点坐标公式
对于二次函数y=ax^2+bx+c
其顶点坐标为 (-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线]
其中x1,2= -b±√b^2-4ac
顶点式:y=a(x-h)^2+k
[抛物线的顶点P(h,k)]
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
注:在3种形式的互相转化中,有如下关系:h=-b/2a= (x₁+x₂)/2 k=(4ac-b^2)/4a 与x轴交点:x₁,x₂=(-b±√b^2-4ac)/2a
二次函数的平移规律口诀
加左减右,加上减下。
意思就是当二次函数写成下面这个样子时:
y=a(x+b)²+c,只要将y=ax²的函数图像按以下规律平移。
(1)b>0时,图像向左平移b个单位(加左)。
(2)b<0时,图像向右平移b个单位(减右)。
(3)c>0时,图像向上平移c个单位(加上)。
(4)c<0时,图像向下平移c个单位(减下)。
抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的凳斗纤开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)