怎样证明数列{sin(n)}发散?
展开全部
我尝试反证法证明一下
首先
sin(a+1)-sina=sin(a+1/2-1/2)-sin(a+1/2-1/2)=2sin1/2 *cos(a+1/2)
sin(a+2)-sin(a+1)=2sin1/2 *cos(a+3/2)
下面开始证明:
假设数列不发散及存在极限,那么上两式左边在a趋近于无穷时=0
即lim cos(a+1/2)=0 (lim下面那个a趋近于无穷就省略了,下同)
且lim cos(a+3/2)=0
由于
lim cos(a+3/2)=lim cos(a+1/2+1)=lim [cos(a+1/2)*cos1-sin(a+1/2)*sin1]=lim[0-sin(a+1/2)*sin1]=0
于是
0=lim sin(a+1/2)
那么lim {[sin(a+1/2)]^2+[cos(a+1/2)]^2}=0
显然不成立
首先
sin(a+1)-sina=sin(a+1/2-1/2)-sin(a+1/2-1/2)=2sin1/2 *cos(a+1/2)
sin(a+2)-sin(a+1)=2sin1/2 *cos(a+3/2)
下面开始证明:
假设数列不发散及存在极限,那么上两式左边在a趋近于无穷时=0
即lim cos(a+1/2)=0 (lim下面那个a趋近于无穷就省略了,下同)
且lim cos(a+3/2)=0
由于
lim cos(a+3/2)=lim cos(a+1/2+1)=lim [cos(a+1/2)*cos1-sin(a+1/2)*sin1]=lim[0-sin(a+1/2)*sin1]=0
于是
0=lim sin(a+1/2)
那么lim {[sin(a+1/2)]^2+[cos(a+1/2)]^2}=0
显然不成立
展开全部
n趋近无穷的极限不存在,它是摆动的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
看到这儿啦…
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我理解能力不好,告诉我什么是发散
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询