arctanx函数的图像是什么样子的啊?
1个回答
展开全部
y=arctanx的函数图像如下所示。
当x取正无穷时,y=arctanx=π/2。当x取负无穷时,y=-arctanx=π/2。
函数y=arctanx是反正切函数,是函数y=tanx的反函数。性质如下。
1、arctanx的定义域为R,即全体实数。
2、arctanx的值域为(-π/2,π/2)。
3、arctanx为单调增函数,单调区间为(-∞,﹢∞)。
反正切函数是存在且唯一确定的。
反正切函数是反三角函数的一种。由于正切函数y=tanx在定义域R上不具有一一对应的关系,所以不存在反函数。注意这里选取是正切函数的一个单调区间。而由于正切函数在开区间(-π/2,π/2)中是单调连续的,因此,反正切函数是存在且唯一确定的。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询