
什么是方程的齐次解?
1个回答
展开全部
"齐次"表示各个未知数的次数是相同的.例如y/x+x/y+a=1等,它们的右端,都是未知数的齐次函数或齐次多项式
一阶线性微分方程,定义:形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。(这里所谓的一阶,指的是方程对于未知函数y及其导数是一次方程。)
当Q(x)≡0时,方程为y'+P(x)y=0,这时称方程为一阶齐次线性方程。(这里所谓的齐次,指的是方程的每一项关于y、y'、y"等的次数。因为y'和P(x)y都是一次的,所以为齐次。)
当Q(x)≠0时,称方程y'+P(x)y=Q(x)为一阶非齐次线性方程。(由于Q(x)中未含y及其导数,所以是关于y及其各阶导数的0次项,因为方程中含一次项又含0次项,所以为非齐次。)
一阶线性微分方程的求解一般采用常数变易法。
一阶线性微分方程,定义:形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。(这里所谓的一阶,指的是方程对于未知函数y及其导数是一次方程。)
当Q(x)≡0时,方程为y'+P(x)y=0,这时称方程为一阶齐次线性方程。(这里所谓的齐次,指的是方程的每一项关于y、y'、y"等的次数。因为y'和P(x)y都是一次的,所以为齐次。)
当Q(x)≠0时,称方程y'+P(x)y=Q(x)为一阶非齐次线性方程。(由于Q(x)中未含y及其导数,所以是关于y及其各阶导数的0次项,因为方程中含一次项又含0次项,所以为非齐次。)
一阶线性微分方程的求解一般采用常数变易法。

2025-02-09 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询