什么叫微积分?请用生活中通俗易懂的语言描述!谢谢!!!

安克鲁
2010-08-05 · TA获得超过4.2万个赞
知道大有可为答主
回答量:4165
采纳率:33%
帮助的人:2676万
展开全部
下面不用任何专业术语,只用日常生活的比喻来大概说明一下微积分的原理。

一、微分的思想:

从上海到拉萨的平均坡度是多少?(高度比上距离)
从成都到拉萨的平均坡度是多少?
从古玉到拉萨的平均坡度是多少?
从墨脱到拉萨的平均坡度是多少?
从大丁卡到拉萨的平均坡度是多少?
...............................
距离越来短,从大范围的平均坡度,到小范围内平均坡度,到很小很小距离内的平均坡度,.........,一直这样无止境的下去,最后得到一个点的坡度值。

你的头发,在过去的十年中,平均每秒长多长?
在过去的一年中,平均每秒长多长毫米?
在过去的半年中,平均每秒长多长毫米?
在过去的一个月中,平均每秒长多长毫米?
在过去的一星期中,平均每秒长多长毫米?
在过去的12小时中,平均每秒长多长毫米?
在过去的10分钟内,平均每秒长多长毫米?
在过去的10秒内, 平均每秒长多长毫米?
在过去的0.1秒内, 平均生长速度(仍然按米每秒表示)?
在过去的0.001秒内, 平均生长速度(仍然按米每秒表示)?
在过去的0.00001秒内, 平均生长速度(仍然按米每秒表示)?
在过去的0.0000001秒内, 平均生长速度(仍然按米每秒表示)?
..........................................................
这样从平均增长速度算到了瞬时增长速度。

以上两例就是微分。

二、积分的思想:

在一张绘图纸上,画一个圆(半径10cm),绘图纸的小方格是1cm×1cm,估算圆的面积;
绘图纸的小方格是0.1cm×0.1cmm,估算圆的面积;
绘图纸的小方格是0.001cm×0.001cm,估算圆的面积;
绘图纸的小方格是0.00001cm×0.00001cm,估算圆的面积;
绘图纸的小方格是0.0000001cm×0.0000001cm,估算圆的面积;
绘图纸的小方格是0.000000001cm×0.000000001cm,估算圆的面积;
绘图纸的小方格是0.00000000001cm×0.0000000001cm,估算圆的面积;
..................................................................

这样的估计越来越准确。

将一条曲线分成10段,将每每一段的直线距离加起来;
将该曲线分成100段,将每每一段的直线距离加起来;
将该曲线分成10000段,将每每一段的直线距离加起来;
将该曲线分成1000000段,将每每一段的直线距离加起来;
将该曲线分成100000000段,将每每一段的直线距离加起来;
将该曲线分成10000000000段,将每每一段的直线距离加起来;
将该曲线分成1000000000000段,将每每一段的直线距离加起来;
将该曲线分成100000000000000段,将每每一段的直线距离加起来;
将该曲线分成10000000000000000段,将每每一段的直线距离加起来;
............................................................
这样算出的长度当成曲线的长度越来越准确。

以上两例就是积分思想。

微积分 = 微分 + 积分

大概明白一点了吗?有问题欢迎来讨论。
梦蝶蓝帆
2010-08-05 · TA获得超过171个赞
知道答主
回答量:166
采纳率:0%
帮助的人:53.2万
展开全部
微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。 微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。 学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量。就是说,除的数不是零,所以有意义,同时,这个小量可以取任意小,只要满足在德尔塔区间,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。这个概念是成功的。 微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。 客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lsw8080
2010-08-05 · TA获得超过1402个赞
知道小有建树答主
回答量:664
采纳率:0%
帮助的人:270万
展开全部
微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式