抽象函数单调性证明
已知f(x)是R上的偶函数,且在(0,+∞)上单调递增,并且f(x)<0对一切x∈R成立,试判断-1/f(x)在(-∞,0)上的单调性,并证明你的结论。不仅要判断还要证明...
已知f(x)是R上的偶函数,且在(0,+∞)上单调递增,并且f(x)<0对一切x∈R成立,试判断-1/f(x)在(-∞,0)上的单调性,并证明你的结论。
不仅要判断还要证明 主要是证明! 展开
不仅要判断还要证明 主要是证明! 展开
6个回答
展开全部
设x1<x2,则
∵f(x)+f(y)=f(x-y)对任意实数x,y都成立,那么令x=x2,y=x2-x1有:
f(x2)+f(x2-x1)=f(x2-(x2-x1))=f(x1)
f(x1)-f(x2)=【f(x2)+f(x2-x1)】-f(x2)=f(x2-x1)
∵x2-x1>0,∴f(x2-x1)>0
∴f(x1)-f(x2)>0
∴f(x)是减函数;
本题的证明关键点在于:f(x)+f(y)=f(x-y)对任意实数x、y都成立;
∵f(x)+f(y)=f(x-y)对任意实数x,y都成立,那么令x=x2,y=x2-x1有:
f(x2)+f(x2-x1)=f(x2-(x2-x1))=f(x1)
f(x1)-f(x2)=【f(x2)+f(x2-x1)】-f(x2)=f(x2-x1)
∵x2-x1>0,∴f(x2-x1)>0
∴f(x1)-f(x2)>0
∴f(x)是减函数;
本题的证明关键点在于:f(x)+f(y)=f(x-y)对任意实数x、y都成立;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询