抽象函数单调性证明

已知f(x)是R上的偶函数,且在(0,+∞)上单调递增,并且f(x)<0对一切x∈R成立,试判断-1/f(x)在(-∞,0)上的单调性,并证明你的结论。不仅要判断还要证明... 已知f(x)是R上的偶函数,且在(0,+∞)上单调递增,并且f(x)<0对一切x∈R成立,试判断-1/f(x)在(-∞,0)上的单调性,并证明你的结论。
不仅要判断还要证明 主要是证明!
展开
卿蕙道冷珍
2019-03-09 · TA获得超过3767个赞
知道大有可为答主
回答量:3118
采纳率:35%
帮助的人:185万
展开全部
设x1<x2,则
∵f(x)+f(y)=f(x-y)对任意实数x,y都成立,那么令x=x2,y=x2-x1有:
f(x2)+f(x2-x1)=f(x2-(x2-x1))=f(x1)
f(x1)-f(x2)=【f(x2)+f(x2-x1)】-f(x2)=f(x2-x1)
∵x2-x1>0,∴f(x2-x1)>0
∴f(x1)-f(x2)>0
∴f(x)是减函数;
本题的证明关键点在于:f(x)+f(y)=f(x-y)对任意实数x、y都成立;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式