数学题,急!!!!!
1。在△ABC中,<B小于<C,AQ平分<BAC交Bc于点Q,动点T是直线AQ上的任意一点(不与A,Q重合),作TH⊥BC于点H,试探究<HTQ,<B,<C之间的数量关系...
1。在△ABC中,<B小于<C,AQ平分<BAC交Bc于点Q,动点T是直线AQ上的任意一点(不与A,Q重合),作TH⊥BC于点H,试探究<HTQ,<B,<C之间的数量关系。
(三角形是个锐角三角形)
2。在锐角三角形中画3条线段,把三角形分成3部分,每个部分的面积相等。(至少两种方法。)
3。(1)△ABC是锐角三角形,高BD、CE相交于点H,找出<BHC和<A之间存在的数量关系,并说明理由;
(2)若△ABC是钝角三角形,<A大于90°,高BD、CE所在的直线相交于点H。这是(1)中的数量关系是否仍然成立。
快快,这些问题急死我了,请高手多多帮助。 展开
(三角形是个锐角三角形)
2。在锐角三角形中画3条线段,把三角形分成3部分,每个部分的面积相等。(至少两种方法。)
3。(1)△ABC是锐角三角形,高BD、CE相交于点H,找出<BHC和<A之间存在的数量关系,并说明理由;
(2)若△ABC是钝角三角形,<A大于90°,高BD、CE所在的直线相交于点H。这是(1)中的数量关系是否仍然成立。
快快,这些问题急死我了,请高手多多帮助。 展开
展开全部
孩子!你要自己做作业!
否则后果将非常严重!
否则后果将非常严重!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1。<HTQ=1/2(∠C-∠B。中,∠ADH=∠AEH。
2.①分别连接重心即ABC三顶点。②把一边三等分,连接该边对角的顶点和着两个三等分点。
3。①<BHC+<A=180°。因为四边形ADHE=90°。
②仍然成立。证法同①一样。
2.①分别连接重心即ABC三顶点。②把一边三等分,连接该边对角的顶点和着两个三等分点。
3。①<BHC+<A=180°。因为四边形ADHE=90°。
②仍然成立。证法同①一样。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询