1个回答
展开全部
高次的方程,就是需要做因式分解,从而得到求解
-12x +8 = 3(x四次方)- 2(x立方)- 9(x平方) +4
3(x四次方)- 2(x立方)- 9x" + 12x -4 = 0
3(x四次方)- 2(x立方)-[ 9x" - 2*(3x)*2 +4 ] = 0
(x立方)(3x - 2) - (3x - 2)" = 0
(3x - 2)[(x立方)- (3x - 2)] = 0
(3x - 2)[(x立方)- x" + x" - 3x + 2 ] = 0
(3x - 2)[(x立方 - x")+ (x" - 3x + 2)] = 0
(3x - 2)[ x"(x - 1) + (x - 1)(x - 2)] = 0
(3x - 2)(x - 1)[ x" + x - 2 ] = 0
(3x - 2)(x - 1)"(x + 2) = 0
这个方程的解,就是
x1 = 2/3
x2 = x3 = 1
x4 = -2
-12x +8 = 3(x四次方)- 2(x立方)- 9(x平方) +4
3(x四次方)- 2(x立方)- 9x" + 12x -4 = 0
3(x四次方)- 2(x立方)-[ 9x" - 2*(3x)*2 +4 ] = 0
(x立方)(3x - 2) - (3x - 2)" = 0
(3x - 2)[(x立方)- (3x - 2)] = 0
(3x - 2)[(x立方)- x" + x" - 3x + 2 ] = 0
(3x - 2)[(x立方 - x")+ (x" - 3x + 2)] = 0
(3x - 2)[ x"(x - 1) + (x - 1)(x - 2)] = 0
(3x - 2)(x - 1)[ x" + x - 2 ] = 0
(3x - 2)(x - 1)"(x + 2) = 0
这个方程的解,就是
x1 = 2/3
x2 = x3 = 1
x4 = -2
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询