为什么说罗尔定理的推论:若函数的n阶导数不等于零,则原函数至多有n个根?

麻烦详细些,多谢!... 麻烦详细些,多谢! 展开
数论_高数
推荐于2017-09-19 · TA获得超过4847个赞
知道大有可为答主
回答量:993
采纳率:0%
帮助的人:1827万
展开全部
罗尔定理:f(x)在[a,b]连续,在(a,b)可导,如果f(a)=f(b),则f'(x)至少有一个根。

特别的,如果上述f(a)=f(b)=0,也就是f(x)在[a,b]有两个根,那么f'(x)在(a,b)至少有一个根。反之,如果f'(x)在(a,b)没有根,f(x)在[a,b]就不会有多于1个的根。

简单说,导函数没有根,原函数至多有一个根。

推而广之,如果f(x)在[a,b]连续,在(a,b)内n阶可导。并且f(x)在[a,b]有n+1个根:x0,x1,x2,...xn,那么根据罗尔定理,f'(x)在(x0,x1),(x1,x2),...,(xn-1,xn)内分别至少有一个根,从而在(a,b)内至少有n个根,同理f''(x)在(a,b)内至少有n-1个根,...,fk(x)(k阶导数)在(a,b)内至少有n-k+1个根,n阶导数fn(x)在(a,b)内至少有1个根。
因此,反过来,如果n阶导数没有根,f(x)就至多有n个根。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式