如图:四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=3,点F是PB的中点,点E在边BC上移动

如图:四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=3,点F是PB的中点,点E在边BC上移动.(1)证明:无论点E在BC边的何处,都... 如图:四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=3,点F是PB的中点,点E在边BC上移动.(1)证明:无论点E在BC边的何处,都有PE⊥AF;(2)当BE等于何值时,PA与平面PDE所成角的大小为45°. 展开
 我来答
影歌SAMA0839
推荐于2016-11-13 · TA获得超过177个赞
知道答主
回答量:118
采纳率:100%
帮助的人:52.6万
展开全部
(1)分别以AD、AB、AP所在直线为x、y、z轴,建立如图所示空间坐标系
则可得P(0,0,1),B(0,1,0),F(0,
1
2
1
2
),D(
3
,0,0)
  设BE=x,则E(x,1,0)
PE
=(x,1,-1)
PE
?
AF
=x?0+1×
1
2
+(-1)×
1
2
=0
可得
PE
AF
,即AF⊥PE成立;
(2)求出
PD
=(
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消