求解!!!!。
2个回答
2014-11-17
展开全部
解:作AB⊥MN,垂足为B。 在RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160, ∴ AB=AP=80。 (在直角三角形中,30°所对的直角边等于斜边的一半) ∵点A到直线MN的距离小于100m,∴这所中学会受到噪声的影响。 如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响,那么AC=100(m), 由勾股定理得:BC2=1002-802=3600,∴ BC=60。 同理,拖拉机行驶到点D处学校开始脱离影响,那么,AD=100(m),BD=60(m), ∴CD=120(m)。 拖拉机行驶的速度为: 18km/h=5m/s t=120m÷5m/s=24s。
2014-11-17
展开全部
解:作AB⊥MN,垂足为B。 在RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160, ∴ AB=AP=80。 (在直角三角形中,30°所对的直角边等于斜边的一半) ∵点A到直线MN的距离小于100m,∴这所中学会受到噪声的影响。 如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响,那么AC=100(m), 由勾股定理得:BC2=1002-802=3600,∴ BC=60。 同理,拖拉机行驶到点D处学校开始脱离影响,那么,AD=100(m),BD=60(m), ∴CD=120(m)。 拖拉机行驶的速度为: 18km/h=5m/s t=120m÷5m/s=24s。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询