y=x^x的利用对数求导法求导数
2个回答
展开全部
x^y=y^x
两边取对数
ylnx=xlny
两边对x求导
y'lnx+(y/x)=lny+(x/y)*y'
y'((x/y)-lnx)=(y/x)-lny
y'=[(y/x)-lny]/[(x/y)-lnx]
y'=y[(xlny)-y]/(x[(ylnx)-x])
两边取对数
ylnx=xlny
两边对x求导
y'lnx+(y/x)=lny+(x/y)*y'
y'((x/y)-lnx)=(y/x)-lny
y'=[(y/x)-lny]/[(x/y)-lnx]
y'=y[(xlny)-y]/(x[(ylnx)-x])
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询