初中数学题,急求
3个回答
展开全部
解:只在在原式的基础上乘以(2-1),就可以不断的形成平方差,
原式=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)
=(2^16-1)(2^16+1)(2^32+1)
=(2^32-1)(2^32+1)
=2^64-1
原式=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)
=(2^16-1)(2^16+1)(2^32+1)
=(2^32-1)(2^32+1)
=2^64-1
展开全部
原式=(2+1)(2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)/(2-1)=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)/(2-1)=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)/(2-1)=(2^8-1)(2^8+1)(2^16+1)(2^32+1)/(2-1)=(2^16-1)(2^16+1)(2^32+1)/(2-1)=(2^32-1)(2^32+1)/(2-1)=(2^64-1)/(2-1)=2^64-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
=1*(2+1)(2^2+1)(2^4+1)*(2^8+1)(2^16+1)(2^32+1)+1
=(2-1)(2+1)(2^2+1)*(2^4+1)*(2^8+1)(2^16+1)(2^32+1)+1
=(2^2-1)(2^2+1)(2^4+1)*(2^8+1)(2^16+1)(2^32+1)+1
反复运用平方差
=(2^64-1)+1
=2^64
=(2-1)(2+1)(2^2+1)*(2^4+1)*(2^8+1)(2^16+1)(2^32+1)+1
=(2^2-1)(2^2+1)(2^4+1)*(2^8+1)(2^16+1)(2^32+1)+1
反复运用平方差
=(2^64-1)+1
=2^64
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询