求定积分的极限怎么求?

 我来答
我爱学习112
高粉答主

2021-08-17 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:155万
展开全部

答案如下图所示:

当极限的表达式里含有定积分时,,常将这种极限称为定积分的极限。对于这类定积分的极限,以往求极限的各种方法原则上都是可用的。

所不同的是,这类极限问题往往需要充分应用积分的各种特性和运算法则等,有时也可将问题转化为某函数的积分和或者达布和的极限,从而转化为新的定积分问题。

定积分的几何意义:

1、纯粹几何图形而言,定积分的意义是由曲线、x轴,区间起点的垂直线x=a区间终点的垂直线x=b,所围成的面积。

2、也可以广义而言,定积分的几何意义就是“抽象的面积”。但是在具体应用题中,要看具体物理过程而定,例如:

(1)如果横轴是体积,纵轴是压强,“抽象面积”的意义是热力学系统对外做功。

(2)如果横轴是时间,纵轴是电流,“抽象面积”的意义是电源对外放出的电量。

小鱼的生活笔记
高能答主

2020-12-29 · 专注于生活领域的最新咨询和生活小细节
小鱼的生活笔记
采纳数:608 获赞数:411548

向TA提问 私信TA
展开全部

答案如下图所示:

当极限的表达式里含有定积分时,,常将这种极限称为定积分的极限。对于这类定积分的极限,以往求极限的各种方法原则上都是可用的。

所不同的是,这类极限问题往往需要充分应用积分的各种特性和运算法则等,有时也可将问题转化为某函数的积分和或者达布和的极限,从而转化为新的定积分问题。

扩展资料

分点问题

定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距是相等的。但是必须指出,即使不相等,积分值仍然相同。

我们假设这些“矩形面积和”,那么当n→+∞时,的最大值趋于0,所以所有的趋于0,所以S仍然趋于积分值。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
生活的也乐趣多
高粉答主

2021-08-15 · 给休闲加点娱乐,让生活多一点快乐。
生活的也乐趣多
采纳数:184 获赞数:66208

向TA提问 私信TA
展开全部

答案如下图所示:

当极限的表达式里含有定积分时,,常将这种极限称为定积分的极限。对于这类定积分的极限,以往求极限的各种方法原则上都是可用的。

所不同的是,这类极限问题往往需要充分应用积分的各种特性和运算法则等,有时也可将问题转化为某函数的积分和或者达布和的极限,从而转化为新的定积分问题。

定积分的几何意义:

1、纯粹几何图形而言,定积分的意义是由曲线、x轴,区间起点的垂直线x=a区间终点的垂直线x=b,所围成的面积。

2、也可以广义而言,定积分的几何意义就是“抽象的面积”。但是在具体应用题中,要看具体物理过程而定,例如:

(1)如果横轴是体积,纵轴是压强,“抽象面积”的意义是热力学系统对外做功。

(2)如果横轴是时间,纵轴是电流,“抽象面积”的意义是电源对外放出的电量。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
九十四楼
2019-03-21 · TA获得超过1.7万个赞
知道大有可为答主
回答量:5838
采纳率:57%
帮助的人:2000万
展开全部

答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友db04c80966
2019-03-21 · TA获得超过187个赞
知道答主
回答量:150
采纳率:50%
帮助的人:39.7万
展开全部
先把定积分解出来,就是个关于X的代数式,再求解极限
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式