展开全部
13. 设平面方程是 x/a + y/a + z/c = 1, 过点 P(1, 2, 3)
则 1/a + 2/a + 3/c = 1, 3/c = 1-3/a = (a-3)/a, c = 3a/(a-3)
平面与三个坐标平面所围立体体积
V = (1/6)a·a·c = a^3/[2(a-3)]
dV/da = (1/2)[3a^2(a-3)-a^3]/(a-3)^2
= (1/2)(2a^3-9a^2)/(a-3)^2 = (1/2)a^2(2a-9)/(a-3)^2,
得非零驻点 a = 9/2。
d^2V/da^2 = (1/2)[(6a^2-18a)(a-3)^2-(2a^3-9a^2)2(a-3)]/(a-3)^4
= (1/2)[(6a^2-18a)(a-3)-2(2a^3-9a^2)]/(a-3)^3
= a(a^2-9a+27)/(a-3)^3,
a = 9/2 时 d^2V/da^2 = (9/2)(81/4-81/2+27)/(3/2)^3 > 0
a = 9/2 是极小值点,也是最小值点。此时平面方程是
x/(9/2) + y/(9/2) + z/9 = 1
则 1/a + 2/a + 3/c = 1, 3/c = 1-3/a = (a-3)/a, c = 3a/(a-3)
平面与三个坐标平面所围立体体积
V = (1/6)a·a·c = a^3/[2(a-3)]
dV/da = (1/2)[3a^2(a-3)-a^3]/(a-3)^2
= (1/2)(2a^3-9a^2)/(a-3)^2 = (1/2)a^2(2a-9)/(a-3)^2,
得非零驻点 a = 9/2。
d^2V/da^2 = (1/2)[(6a^2-18a)(a-3)^2-(2a^3-9a^2)2(a-3)]/(a-3)^4
= (1/2)[(6a^2-18a)(a-3)-2(2a^3-9a^2)]/(a-3)^3
= a(a^2-9a+27)/(a-3)^3,
a = 9/2 时 d^2V/da^2 = (9/2)(81/4-81/2+27)/(3/2)^3 > 0
a = 9/2 是极小值点,也是最小值点。此时平面方程是
x/(9/2) + y/(9/2) + z/9 = 1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询