请问这道高数,这题求导怎么出来的?
展开全部
运用了乘积的导
f=xg(x)[其中g=(x一1)…(x+100)
f'=g(x)+xg(x)'
所以f(o)'=g(o)=1x…100=1001
望采纳
f=xg(x)[其中g=(x一1)…(x+100)
f'=g(x)+xg(x)'
所以f(o)'=g(o)=1x…100=1001
望采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x) =x(x-1)(x+2)(x-3)....(x+100)
lnf(x) =lnx +ln(x-1) +....+ln(x+100)
f'(x)/f(x) =1/x+1/(x-1)+1/(x+2)+....+1/(x+100)
f'(x) =[1/x+1/(x-1)+1/(x+2)+....+1/(x+100)] . [x(x-1)(x+2)(x-3)....(x+100)]
f'(0)
=(0-1)(0+2)(0-3)....(0+100)
=100!
lnf(x) =lnx +ln(x-1) +....+ln(x+100)
f'(x)/f(x) =1/x+1/(x-1)+1/(x+2)+....+1/(x+100)
f'(x) =[1/x+1/(x-1)+1/(x+2)+....+1/(x+100)] . [x(x-1)(x+2)(x-3)....(x+100)]
f'(0)
=(0-1)(0+2)(0-3)....(0+100)
=100!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令u=x,v=(x-1)(x+2)(x-3)...(x+100),由f’(x)=u’v+uv’得:f’(x)=v+uv’=(x-1)(x+2)(x-3)...(x+100)+uv’,显然,u(0)=0,f’(0)=v(0)=(-1)x2x(-3)x...x100=100!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
根据乘积的求导法则:(uvw)'=u'vw+uv'w+uvw'
同理:(uvwz)'=u'vwz+uv'wz+uvw'z+uvwz'
…………
f(x)=x(x-1)(x+2)(x-3)(x+4)……(x+100)
f'(x)=[x'(x-1)(x+2)(x-3)(x+4)……(x+100)]+[x(x-1)'(x+2)(x-3)(x+4)……(x+100)]+[x(x-1)(x+2)'(x-3)(x+4)……(x+100)]+……+[x(x-1)(x+2)(x-3)(x+4)……(x+100)']
=[(x-1)(x+2)(x-3)(x+4)……(x+100)]+[x(x+2)(x-3)(x+4)……(x+100)]+[x(x-1)(x-3)(x+4)……(x+100)]+……+[x(x-1)(x+2)(x-3)(x+4)……(x-99)']
f'(0)=(0-1)(0+2)(0-3)(0+4)……(0+100)
=(-1)×2×(-3)×4×……×(-99)×100
=1×2×3×4×……×100
=100!
同理:(uvwz)'=u'vwz+uv'wz+uvw'z+uvwz'
…………
f(x)=x(x-1)(x+2)(x-3)(x+4)……(x+100)
f'(x)=[x'(x-1)(x+2)(x-3)(x+4)……(x+100)]+[x(x-1)'(x+2)(x-3)(x+4)……(x+100)]+[x(x-1)(x+2)'(x-3)(x+4)……(x+100)]+……+[x(x-1)(x+2)(x-3)(x+4)……(x+100)']
=[(x-1)(x+2)(x-3)(x+4)……(x+100)]+[x(x+2)(x-3)(x+4)……(x+100)]+[x(x-1)(x-3)(x+4)……(x+100)]+……+[x(x-1)(x+2)(x-3)(x+4)……(x-99)']
f'(0)=(0-1)(0+2)(0-3)(0+4)……(0+100)
=(-1)×2×(-3)×4×……×(-99)×100
=1×2×3×4×……×100
=100!
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询