如图,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连结EF并延长

如图,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不需证明)。(温馨提示:在... 如图,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不需证明)。(温馨提示:在图1中,连结BD,取BD的中点H,连结HE,HF,根据三角形中位线定理可证得HE=HF,从而∠HFE=∠HEF,再利用平行线的性质,可证得∠BME=∠CNE)

(1)如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E,F分别是BC,AD的中点,连结EF,分别交DC,AB于点M,N,判断△OMN的形状,请直接写出结论

(2)如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,与BA的延长线交于点G,若∠EFC=60°,连结GD,判断△AGD的形状并证明
图没有,不好意思啊
展开
江盛恺
2013-03-17 · 贡献了超过107个回答
知道答主
回答量:107
采纳率:0%
帮助的人:15.6万
展开全部

  解:(1)取AC中点P,连接PF,PE,
可知PE=AB2,
PE∥AB,
∴∠PEF=∠ANF,
同理PF=CD2,
PF∥CD,
∴∠PFE=∠CME,
又PE=PF,
∴∠PFE=∠PEF,
∴∠OMN=∠ONM,
∴△OMN为等腰三角形.

(2)判断出△AGD是直角三角形.
证明:如图连接BD,取BD的中点H,连接HF、HE,
∵F是AD的中点,
∴HF∥AB,HF=12AB,


同理,HE∥CD,HE=12CD,
∵AB=CD
∴HF=HE,
∵∠EFC=60°,
∴∠HEF=60°,
∴∠HEF=∠HFE=60°,
∴△EHF是等边三角形,
∴∠3=∠EFC=∠AFG=60°,
∴△AGF是等边三角形.
∵AF=FD,
∴GF=FD,
∴∠FGD=∠FDG=30°
∴∠AGD=90°
即△AGD是直角三角形.

参考资料: http://www.jyeoo.com/math/ques/detail/c139c5f5-855b-498f-8dda-4d60e9f6e5fa

王勃啊
推荐于2017-11-23 · TA获得超过1.1万个赞
知道大有可为答主
回答量:5015
采纳率:62%
帮助的人:4080万
展开全部
前面给的提示蛮多的,在回答你的问题的时候,我又学了点东西,呵呵

(1)△OMN 为等腰三角形
(2)△AGD 为有一个角为30°的直角三角形
证明:连接BD,取BD中点I,连接FI,EI,因为E,F为BC和AD的中点
所以IE//DC IF//AB IE=1/2*DC=1/2*AB=IF ∠IEF=∠EFC=60°
∠AGF=∠IFE=∠IEF=60°
∠AFG=∠EFC=60°
所以△AGF等边.
AD=2AF
所以GF=FD
所以∠GDF=1/2*∠GDA=30°
所以∠AGD=180-30°-60°=90°

所以△AGD为有一个角为30°的直角三角形
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
nice汉字
2013-06-02 · TA获得超过2.2万个赞
知道小有建树答主
回答量:989
采纳率:100%
帮助的人:69.3万
展开全部
解:(1)取AC中点P,连接PF,PE,
可知PE=
AB2
‍‍‍‍‍‍‍,
PE∥AB,
∴∠PEF=∠ANF,
同理PF=
CD2

PF∥CD,
∴∠PFE=∠CME,
又PE=PF,
∴∠PFE=∠PEF,
∴∠OMN=∠ONM,
∴△OMN为等腰三角形.

(2)判断出△AGD是直角三角形.
证明:如图连接BD,取BD的中点H,连接HF、HE,
∵F是AD的中点,
∴HF∥AB,HF=
12
AB,
同理,HE∥CD,HE=
12
CD,
∵AB=CD
∴HF=HE,
∵∠EFC=60°,
∴∠HEF=60°,
∴∠HEF=∠HFE=60°,
∴△EHF是等边三角形,
∴∠3=∠EFC=∠AFG=60°,
∴△AGF是等边三角形.
∵AF=FD,
∴GF=FD,
∴∠FGD=∠FDG=30°
∴∠AGD=90°
即△AGD是直角三角形。
参考的网址是(http://www.jyeoo.com/math/ques/detail/c139c5f5-855b-498f-8dda-4d60e9f6e5fa?a=1
希望采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
相见云端
2012-11-02 · TA获得超过208个赞
知道答主
回答量:16
采纳率:0%
帮助的人:7.4万
展开全部
解:(1)取AC中点P,连接PF,PE,
可知PE=

AB
2


PE∥AB,
∴∠PEF=∠ANF,
同理PF=

CD
2


PF∥CD,
∴∠PFE=∠CME,
又PE=PF,
∴∠PFE=∠PEF,
∴∠OMN=∠ONM,
∴△OMN为等腰三角形.

(2)判断出△AGD是直角三角形.
证明:如图连接BD,取BD的中点H,连接HF、HE,
∵F是AD的中点,
∴HF∥AB,HF=

1
2
AB,同理,HE∥CD,HE=

1
2
CD,

∵AB=CD
∴HF=HE,
∵∠EFC=60°,
∴∠HEF=60°,
∴∠HEF=∠HFE=60°,
∴△EHF是等边三角形,
∴∠3=∠EFC=∠AFG=60°,
∴△AGF是等边三角形.
∵AF=FD,
∴GF=FD,
∴∠FGD=∠FDG=30°
∴∠AGD=90°
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
铭记的回忆1998
2012-06-13
知道答主
回答量:15
采纳率:0%
帮助的人:2.4万
展开全部
证明:如图连结 ,取 的中点 ,连结 , 1分
是 的中点,
, ,

同理, ,



. 1分


是等边三角形. 1分

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式