a>0,b>0 ,a*a+1/(a*b)+1/(a*a-a*b)的最小值
1个回答
展开全部
解:
∵a>0,b>0,
∴a*a+1/(a*b)+1/(a*a-a*b)
=﹛a(a-b)+ab+1/ab+1/[a(a-b)]﹜
=a(a-b)+1/[a(a-b)]+ab+1/ab
≥2×﹛a(a-b)·1/[a(a-b)]﹜+2﹛ab·1/ab﹜
=4
当a*a+1/(a*b)+1/(a*a-a*b)=4时,
a(a-b)=1/[a(a-b)]且ab=1/ab,即a=√2,b=√2/2,取到最小值;
∴a*a+1/(a*b)+1/(a*a-a*b)的最小值为4
∵a>0,b>0,
∴a*a+1/(a*b)+1/(a*a-a*b)
=﹛a(a-b)+ab+1/ab+1/[a(a-b)]﹜
=a(a-b)+1/[a(a-b)]+ab+1/ab
≥2×﹛a(a-b)·1/[a(a-b)]﹜+2﹛ab·1/ab﹜
=4
当a*a+1/(a*b)+1/(a*a-a*b)=4时,
a(a-b)=1/[a(a-b)]且ab=1/ab,即a=√2,b=√2/2,取到最小值;
∴a*a+1/(a*b)+1/(a*a-a*b)的最小值为4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询