具体回答如下:
令x=cost,dx=-sintdt
∫dx/√(1+x²)
=∫sintdt/sint
=t+C=arccosx+C
扩展资料:
对于一个函启型弯数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎悄闷曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零租档。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。