数列构造法是什么?
构造法是指当解决某些数学问题使用通常方法按照定向思维难以解决问题时,应根据题设条件和结论的特征、性质,从新的角度,用新的观点去观察、分析、理解对象,牢牢抓住反映问题的条件与结论之间的内在联系,运用问题的数据、外形、坐标等特征,使用题中的已知条件为原材料。
运用已知数学关系式和理论为工具,在思维中构造出满足条件或结论的数学对象,从而,使原问题中隐含的关系和性质在新构造的数学对象中清晰地展现出来,并借助该数学对象方便快捷地解决数学问题的方法。
注意:
(1)有穷数列和无穷数列:
项数有限的数列为“有穷数列”(finite sequence);项数无限的数列为“无穷数列”(infinite sequence)。
(2)对于正项数列:(数列的各项都是正数的为正项数列)
1)从第2项起,每一项都大于它的前一项的数列叫做递增数列;如:1,2,3,4,5,6,7。
2)从第2项起,每一项都小于它的前一项的数列叫做递减数列;如:8,7,6,5,4,3,2,1。
3)从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列(摇摆数列)。
(3)周期数列:各项呈周期性变化的数列叫做周期数列(如三角函数)。
(4)常数数列:各项相等的数列叫做常数数列(如:2,2,2,2,2,2,2,2,2)。