求z=6-x^2-y^2及z=√x^2+y^2所围成的立体体积?

 我来答
大沈他次苹0B
2022-08-07 · TA获得超过7305个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:175万
展开全部
立体体积可用三重积分表示,V=∫∫∫dxdydz,积分区域为z=6-x^2-y^2及z=√x^2+y^2所围成的立体,联立两曲面方程,解得z=2即两曲面的交接面.用截面法计算此三重积分,V=∫(0到2)dz∫∫dxdy+∫(2到6)dz∫∫dxdy=π∫(0到2)z^2dz+π∫(2到6)(6-z)dz=32π/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式