部分球面积公式是什么
1个回答
展开全部
问题一:怎么求部分球面的面积 球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底.垂直于截面的直径被截得的一段叫做球冠的高.
定理 球冠的面积等于截成它的球面上大圆周长与球冠的高的积.
即:S球冠=2πRh.
推导过程如下:
假定球冠最大开口部分圆的半径为 r ,对应球半径 R 有关系:r = Rcosθ,则有球冠积分表达:
球冠面积微分元 dS = 2πr*Rdθ = 2πR^2*cosθ dθ
积分下限为θ,上限π/2
所以:S = 2πR*R(1 - sinθ)
其中:R(1 - sinθ)即为球冠的自身高度H
所以:S = 2πRH
所以有了以上的准备知识
我们对这道题的解就位
“已知一个半径R的球,有个截面与该求相截,这个截面距球心O的距离是d。则截面将球截成a,b两个部分,其球面面积分别是Sa和Sb。求Sa,Sb”
Sa:Sb= 2πRH1:2πRH2=H1:H2=(R+d):(R-d)
问题二:球的部分体积怎么算? 球冠,又称球缺. 设所在的球半径为r,底面圆半径为a,球冠的高为h,则这球冠的体积为:
V=πh*(3a^2+h^2)/6=πh^2*(3r-h)/3. 是由球扇形的体积截去一个圆锥的体积而得到的.
定理 球冠的面积等于截成它的球面上大圆周长与球冠的高的积.
即:S球冠=2πRh.
推导过程如下:
假定球冠最大开口部分圆的半径为 r ,对应球半径 R 有关系:r = Rcosθ,则有球冠积分表达:
球冠面积微分元 dS = 2πr*Rdθ = 2πR^2*cosθ dθ
积分下限为θ,上限π/2
所以:S = 2πR*R(1 - sinθ)
其中:R(1 - sinθ)即为球冠的自身高度H
所以:S = 2πRH
所以有了以上的准备知识
我们对这道题的解就位
“已知一个半径R的球,有个截面与该求相截,这个截面距球心O的距离是d。则截面将球截成a,b两个部分,其球面面积分别是Sa和Sb。求Sa,Sb”
Sa:Sb= 2πRH1:2πRH2=H1:H2=(R+d):(R-d)
问题二:球的部分体积怎么算? 球冠,又称球缺. 设所在的球半径为r,底面圆半径为a,球冠的高为h,则这球冠的体积为:
V=πh*(3a^2+h^2)/6=πh^2*(3r-h)/3. 是由球扇形的体积截去一个圆锥的体积而得到的.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询