Y=3sin(2x+π/3)+1的图像用五点法画,五点及函数值如下表?

 我来答
lhmhz
高粉答主

2023-02-28 · 专注matlab等在各领域中的应用。
lhmhz
采纳数:7264 获赞数:17007

向TA提问 私信TA
展开全部

用【五点法】作图的五个关键点:函数图像的最高点、最低点、与x轴的交点、确定原点的位置以及建立坐标系。

第一步,求与x轴的交点

当y=0时,其3sin(2x+π/3)+1=0,sin(2x+π/3)=-1/3

解上述方程,x=-0.6935,1.2171

第二步,求与y轴的交点

当x=0时,其y=3sin(2×0+π/3)+1=3.598

第三步,运用导数的知识,求函数的一阶导数

y'=(3sin(2x+π/3)+1)'=6cos(2x+π/3)

第四步,分别令y'=0,求得函数的极值点

y'=6cos(2x+π/3)=0,2x+π/3=kπ+π/2,x=(kπ+π/6)/2=kπ/2+π/12(k=0,1,2,...)

当k=0时,x=π/12,其对应的y=3sin(2×(π/12)+π/3)+1=4

当k=1时,x=7π/12,其对应的y=3sin(2×(7π/12)+π/3)+1=-3

由此,可知点(π/12,4)为最高点,点(7π/12,-3)为最低点

第五步,运用导数的知识,求函数二阶导数

y"=(6cos(2x+π/3))'=-12sin(2x+π/3)

第六步,判别函数的单调增、减区间

当x=π/12时,y"=-12sin(2×(π/12)+π/3)=-12<0,有最大值。可以判断在x=π/12的左侧是单调上升,在x=π/12的右侧是单调下降

当x=7π/12时,y"=-12sin(2×(7π/12)+π/3)=12>0,有最小值。可以判断在x=7π/12的左侧是单调下降,在x=7π/12的右侧是单调上升

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式