当0=<x=<1时,求函数y=x^2+(2-6a)x+3a^2的最小值

45633huanhuan
2010-08-15 · TA获得超过158个赞
知道答主
回答量:46
采纳率:0%
帮助的人:0
展开全部
解:函数f(x)=x^2+(2-6a)x+3a^2
开口向上,对称轴x=-(2-6a)/2=3a-1
若3a-1≤0,即:a≤1/3
函数f(x)=x^2+(2-6a)x+3a^2在[0,1]上单调递增
当x=0,最小值f(0)=0^2+(2-6a)*0+3a^2=3a^2
若0<3a-1<1,即:1/3<a<2/3
函数f(x)=x^2+(2-6a)x+3a^2在x=3a-1有最小值
最小值:[4*3a^2-(2-6a)^2]/4=-6a^2+6a-1
若3a-1≥1,即:a≥2/3
函数f(x)=x^2+(2-6a)x+3a^2在[0,1]上单调递减
当x=1,最小值f(1)=1^2+(2-6a)*1+3a^2=3a^2-6a+3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式