数学因式分解中交叉相乘法怎么用??求大神指教
2个回答
展开全部
二次三项式,用十字相乘法,分解因式,
我建议,结合分组分解法一同使用,
正如 x" + (a + b)x + ab = ( x + a )( x + b )
把单项式 mx = (a+b)x ,拆开变成 ax + bx ,
就能够分组提公因式进行分解。
【】关键是看常数项的正负,决定一次项怎样一分为二,
常数项不变,只是一次项变成相反数,一次项一分为二的绝对值就不变;
一次项不变,只要常数项变成相反数,一次项就要改变一分为二的方式;
看看 x" ± 10x ± 24,分解因式 4 种情况都有,
【】如果常数项是正数,
一次项就是拆开两个绝对值比原来小的两个项;
x" + 10x + 24
= x" + 4x + 6x + 24
= x( x + 4 ) + 6( x + 4 )
= ( x + 4 )( x + 6 )
常数项 +24 不变,一次项 ±10x 就都是拆开 4x 与 6x 的和,
x" - 10x + 24
= x" - 4x - 6x + 24
= x( x - 4 ) - 6( x - 4 )
= ( x - 4 )( x - 6 )
【】如果常数项是负数,
一次项系数就是分开两个项的相差数;
x" - 10x - 24
= x" - 12x + 2x - 24
= x( x - 12 ) + 2( x - 12 )
= ( x - 12 )( x + 2 )
常数项 -24 不变,一次项 ±10x 就都是拆开 12x 与 2x 的相差数,
x" + 10x - 24
= x" + 12x - 2x - 24
= x( x + 12 ) - 2( x + 12 )
= ( x + 12 )( x - 2 )
【】二次三项式,分解因式,
这样也就是技巧、窍门,
关键就看 c 与 a 的正负,
只要熟悉这个方法,
x" + bx + c,
ax" + bx + c,
ax" + bxy + cy",
我们都同样做得方便。
如果这样也不熟悉,
还可以用配方法,先做做草稿,
我们还是看看 x" - 10x - 24 ,
x" - 10x - 24
首先配方,把二次项和一次项,变成完全平方,
= x" - 10x + 5" - 25 - 24
= ( x - 5 )" - 49
分解因式,用平方差公式
= ( x - 5 )" - 7"
= ( x - 5 - 7 )( x - 5 + 7 )
= ( x - 12 )( x + 2 )
这样的二次三项式,有好多个,
x" ± 5x ± 6,
x" ± 10x ± 24,
x" ± 15x ± 54,
x" ± 20x ± 96,
x" ± 25x ± 150,
……
8x" ± 26x ± 15,
8x" ± 52x ± 60,
8x" ± 78x ± 135,
……
或者说,这些也就是两组,
x" ± 5xy ± 6y" ,
8x" ± 26xy ± 15y" ,
你自己也都做一做,感受一下其中的奥秘吧。
我建议,结合分组分解法一同使用,
正如 x" + (a + b)x + ab = ( x + a )( x + b )
把单项式 mx = (a+b)x ,拆开变成 ax + bx ,
就能够分组提公因式进行分解。
【】关键是看常数项的正负,决定一次项怎样一分为二,
常数项不变,只是一次项变成相反数,一次项一分为二的绝对值就不变;
一次项不变,只要常数项变成相反数,一次项就要改变一分为二的方式;
看看 x" ± 10x ± 24,分解因式 4 种情况都有,
【】如果常数项是正数,
一次项就是拆开两个绝对值比原来小的两个项;
x" + 10x + 24
= x" + 4x + 6x + 24
= x( x + 4 ) + 6( x + 4 )
= ( x + 4 )( x + 6 )
常数项 +24 不变,一次项 ±10x 就都是拆开 4x 与 6x 的和,
x" - 10x + 24
= x" - 4x - 6x + 24
= x( x - 4 ) - 6( x - 4 )
= ( x - 4 )( x - 6 )
【】如果常数项是负数,
一次项系数就是分开两个项的相差数;
x" - 10x - 24
= x" - 12x + 2x - 24
= x( x - 12 ) + 2( x - 12 )
= ( x - 12 )( x + 2 )
常数项 -24 不变,一次项 ±10x 就都是拆开 12x 与 2x 的相差数,
x" + 10x - 24
= x" + 12x - 2x - 24
= x( x + 12 ) - 2( x + 12 )
= ( x + 12 )( x - 2 )
【】二次三项式,分解因式,
这样也就是技巧、窍门,
关键就看 c 与 a 的正负,
只要熟悉这个方法,
x" + bx + c,
ax" + bx + c,
ax" + bxy + cy",
我们都同样做得方便。
如果这样也不熟悉,
还可以用配方法,先做做草稿,
我们还是看看 x" - 10x - 24 ,
x" - 10x - 24
首先配方,把二次项和一次项,变成完全平方,
= x" - 10x + 5" - 25 - 24
= ( x - 5 )" - 49
分解因式,用平方差公式
= ( x - 5 )" - 7"
= ( x - 5 - 7 )( x - 5 + 7 )
= ( x - 12 )( x + 2 )
这样的二次三项式,有好多个,
x" ± 5x ± 6,
x" ± 10x ± 24,
x" ± 15x ± 54,
x" ± 20x ± 96,
x" ± 25x ± 150,
……
8x" ± 26x ± 15,
8x" ± 52x ± 60,
8x" ± 78x ± 135,
……
或者说,这些也就是两组,
x" ± 5xy ± 6y" ,
8x" ± 26xy ± 15y" ,
你自己也都做一做,感受一下其中的奥秘吧。
展开全部
十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b
简单的说,十字相乘的原理 是根据 分解因式。
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b
简单的说,十字相乘的原理 是根据 分解因式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询