已知数列{an}前n项和为Sn,且满足a1=12,an+2SnSn-1=0(n≥2)(1)求证:{1Sn}是等差数列;(2)求数列
已知数列{an}前n项和为Sn,且满足a1=12,an+2SnSn-1=0(n≥2)(1)求证:{1Sn}是等差数列;(2)求数列{an}的通项公式;(3)记数列{bn}...
已知数列{an}前n项和为Sn,且满足a1=12,an+2SnSn-1=0(n≥2)(1)求证:{1Sn}是等差数列;(2)求数列{an}的通项公式;(3)记数列{bn}的通项公式bn=12n?Sn,Tn=b1+b2+…+bn若Tn+n2n?1<m(m∈z)恒成立,求m的最小值.
展开
展开全部
(1)证明:∵a1=
,an+2SnSn-1=0 (n≥2),故 Sn-Sn-1 +2SnSn-1=0,∴
-
=2,
故{
}是以2为公差、以2为首项的等差数列.
(2)由(1)可得
=2+(n-1)2=2n,∴Sn =
,Sn-1=
.
∴an =Sn-Sn-1=
-
=
,(n≥2).
综上可得 an =
.
(3)∵bn=
=
=n?(
)n?1,故 Tn=1?(
)0+2?(
)1+3?(
)2+…+n?(
1 |
2 |
1 |
Sn |
1 |
Sn?1 |
故{
1 |
Sn |
(2)由(1)可得
1 |
Sn |
1 |
2n |
1 |
2(n?1) |
∴an =Sn-Sn-1=
1 |
2n |
1 |
2(n?1) |
?1 |
2n(n?1) |
综上可得 an =
|
(3)∵bn=
1 |
2n?Sn |
2n |
2n |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |