求曲线y=x平方 x=1 y=0 所围成的图形绕y轴旋转而成的旋转体体积
3个回答
展开全部
y=x^2和x=1相交于(1,1)点,
绕X轴旋转所成体积V1=π∫(0→1)y^2dx=π∫(0→1)x^4dx=πx^5/5(0→1)=π/5。
绕y轴旋转所成体积V2=π*1^2*1-π∫(0→1)(√y)^2dy=π-πy^2/2(0→1)=π/2。
其中π*1^2*1是圆柱的体积,而π∫(0→1)(√y)^2dy是抛物线y=x^2、y=1、x=0围成的图形绕Y轴旋转的体积。
扩展资料:
此计算过程使用了定积分和三重积分。
三重积分可设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为rᵢ(i=1,2,...,n),体积记为Δδᵢ,||T||=max{rᵢ},在每个小区域内取点f(ξᵢ,ηᵢ,ζᵢ),作和式Σf(ξᵢ,ηᵢ,ζᵢ)Δδᵢ。
若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。
此方法适用于球面坐标系法、柱面坐标法和直角坐标系法。
展开全部
y=x^2和x=1相交于(1,1)点,
绕X轴旋转所成体积V1=π∫(0→1)y^2dx
=π∫(0→1)x^4dx
=πx^5/5(0→1)
=π/5.
绕y轴旋转所成体积V2=π*1^2*1-π∫(0→1)(√y)^2dy
=π-πy^2/2(0→1)
=π/2.
其中π*1^2*1是圆柱的体积,而π∫(0→1)(√y)^2dy是抛物线y=x^2、y=1、x=0围成的图形绕Y轴旋转的体积.
绕X轴旋转所成体积V1=π∫(0→1)y^2dx
=π∫(0→1)x^4dx
=πx^5/5(0→1)
=π/5.
绕y轴旋转所成体积V2=π*1^2*1-π∫(0→1)(√y)^2dy
=π-πy^2/2(0→1)
=π/2.
其中π*1^2*1是圆柱的体积,而π∫(0→1)(√y)^2dy是抛物线y=x^2、y=1、x=0围成的图形绕Y轴旋转的体积.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=x^2和x=1相交于(1,1)点,
绕X轴旋转所成体积V1=π∫(0→1)y^2dx
=π∫(0→1)x^4dx
=πx^5/5(0→1)
=π/5.
绕y轴旋转所成体积V2=π*1^2*1-π∫(0→1)(√y)^2dy
=π-πy^2/2(0→1)
=π/2.
其中π*1^2*1是圆柱的体积,而π∫(0→1)(√y)^2dy是抛物线y=x^2、y=1、x=0围成的图形绕Y轴旋转的体积.
绕X轴旋转所成体积V1=π∫(0→1)y^2dx
=π∫(0→1)x^4dx
=πx^5/5(0→1)
=π/5.
绕y轴旋转所成体积V2=π*1^2*1-π∫(0→1)(√y)^2dy
=π-πy^2/2(0→1)
=π/2.
其中π*1^2*1是圆柱的体积,而π∫(0→1)(√y)^2dy是抛物线y=x^2、y=1、x=0围成的图形绕Y轴旋转的体积.
追问
绕y轴答案是五分pai哦
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询